Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings

Document Type: Original Research Article

Author

Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings underwent lower carbon losses of 30% and 29%, respectively. The XRD pattern revealed W2C/WC peak ratios of 15.58, 9.14, and 14.96% for WC-1, WC-2, and WC-3 coatings, respectively. The Vickers microhardness of WC-1, WC-2, and WC-3 coatings was measured as 1418 ± 61, 1306 ± 71, and 1203 ± 57 kgf/mm2, respectively. The WC-2 coating showed the maximum fracture toughness of 5.9 MPa.m1/2, after which WC-3 and WC-1 coatings were characterized by 5.6 and 5.4 MPa.m1/2, respectively. The wear rate of the coatings abraded by alumina 60 was 1.2-7.8 times higher than that of the coatings abraded by silica 70 almost over the whole range of applied loads (19.6-127.5 N). The WC-3 coating exhibited lower abrasive wear resistance against alumina 60 than WC-1 and WC-2 coatings. The worn surfaces produced by alumina 60 abrasive showed indications of grooving, pitting, and cutting of the coatings’ surfaces. For all coatings abraded by silica 70, removal of the matrix, micro-grooving, carbide particles fragmentation, and voids formation through carbide pullout were detected. For WC-3 coating, in contrast to WC-2 and WC-3, the indications of sub-surface cracking were identified when abraded by both alumina 60 and silica 70.

Keywords

Main Subjects


1.      Lim, N. S., Das, S., Park, S. Y., Kim, M. C., Park, C. G., “Fabrication and microstructural characterization of nano-structured WC/Co coatings”, Surface and Coatings Technology, Vol. 205, No. 2, (2010), 430-435. DOI:10.1016/j.surfcoat.2010.07.004

2.      Jia, C., Sun, L., Tang, H., Qu, X., “Hot pressing of nanometer WC-Co powder”, International Journal of Refractory Metals and Hard Materials, Vol. 25, No. 1, (2007), 53-56. DOI:10.1016/j.ijrmhm.2005.11.003

3.      Kim, H. C., Shon, I. J., Yoon, J. K., Doh, J. M., “Consolidation of ultrafine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical properties”, International Journal of Refractory Metals and Hard Materials, Vol. 25, No. 1, (2007), 46-52. DOI:10.1016/j.ijrmhm.2005.11.004

4.      Bonache, V., Rayón, E., Salvador, M. D., Busquets, D., “Nanoindentation study of WC–12Co hard metals obtained from nanocrystalline powders: Evaluation of hardness and modulus on individual phases”, Materials Science and Engineering: A, Vol. 527, No. 12, (2010), 2935-2941. DOI:10.1016/j.msea.2010.01.026

5.      Li, C. J., Yang, G. J., “Relationships between feedstock structure, particle parameter, coating deposition, microstructure and properties for thermally sprayed conventional and nanostructured WC-Co”, International Journal of Refractory Metals and Hard Materials, Vol. 39, (2013), 2-17. DOI:10.1016/j.ijrmhm.2012.03.014

6.      Mateen, A., Saha, G. C., Khan, T. I., Khalid, F. A., “Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17wt.% Co coatings”, Surface and Coatings Technology, Vol. 206, (2011), 1077-1084. DOI:10.1016/j.surfcoat.2011.07.075

7.      Saha, G. C., Khan, T. I., “The corrosion and wear performance of microcrystalline WC-10Co-4Cr and near-nanocrystalline WC-17Co high velocity oxy-fuel sprayed coatings on steel substrate”, Metallurgical and Materials Transactions A, Vol. 41, No. 11, (2010), 3000–3009. DOI:10.1007/s11661-010-0296-1

8.      Chivavibul, P., Watanabe, M., Kuroda, S., Shinoda, K., “Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC–Co coatings” Surface and Coatings Technology, Vol. 202, No. 3, (2007), 509-521. DOI:10.1016/j.surfcoat.2007.06.026

9.      Ghadami, F., Ghadami, S. and Abdollah-Pour, H., “Structural and oxidation behavior of atmospheric heat treated plasma sprayed WC–Co coatings”, Vacuum, Vol. 94, (2013), 64-68. DOI:10.1016/j.vacuum.2013.01.019

10.    Aristizabal, M., Sanchez, J. M., Rodriguez, N., Ibarreta, F., Martinez, R., “Comparison of the oxidation behaviour of WC–Co and WC–Ni–Co–Cr cemented carbides”, Corrosion Science, Vol. 53, No. 9, (2011), 2754-2760. DOI:10.1016/j.corsci.2011.05.006

11.    Zhu, Q., Zhu, H. T., Tieu, A. K., Reid, M., Zhang, L. C., “In-situ investigation of oxidation behaviour in high-speed steel roll material under dry and humid atmospheres”, Corrosion Science, Vol. 52, No. 8, (2010), 2707–2715. DOI:10.1016/j.corsci.2010.04.027

12.    Qiao, Y., Fischer, T. E., Dent, A., “The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures”, Surface and Coatings Technology, Vol. 172, No. 1, (2003), 24-41. DOI:10.1016/S0257-8972(03)00242-1

13.    Zhao, H., Ding, Z., Zhang, Y., Wang, Q., “Properties of Nanostructured WC-12Co Coatings Sprayed by HVOF”, In Thermal Spray 2007: Global Coating Solutions (ASM International, (2007), 884-889.

14.    Schroeder, S., Melnyk, C., Grant, D., Gansert, R., Saha, G., Glenesk, L., “Properties of Powders, Coatings and Consolidated Components Produced from Nano-and Near-Nano Crystalline Powders”, Thermal Sparay 2009: Expanding Thermal Spray Performance to New Markets and Applications, Marple, B. R., Hyland, M. M., Lau, Y. –C., Li, C. –J., Lima, R. S., Montavon, G., Eds., ASM International, Materials Park, OH., USA, (2009), 403-408. DOI:10.1361/cp2009itsc0403

15.    Cho, T. Y., Yoon, J. H., Kim, K. S., Song, K. O., Joo, Y. K., Fang, W., Zhang, S. H., Youn, S. J., Chun H. G., Hwang, S. Y., “A Study on HVOF Coatings of Micron and Nano WC-Co Powders”, Surface and Coatings Technology, Vol. 202, No. 22-23, (2008), 5556-5559. DOI:10.1016/j.surfcoat.2008.06.106

16.    Stewart, D. A., Shipway, P. H., Mccartney, D. G., “Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings”, Wear, Vol. 225–229, (1999), 789–798. DOI:10.1016/S0043-1648(99)00032-0

17.    Guilemany, J. M., Dosta, S., Miguel, J. R., “The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders”, Surface and Coatings Technology, Vol. 201, No. 3-4, (2006), 1180-1190. DOI:10.1016/j.surfcoat.2006.01.041

18.    Baik, K. H., Kim, J. H., Seong, B. G., “Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings”, Materials Science and Engineering: A, Vol. 449-451, (2007), 846-849. DOI:10.1016/j.msea.2006.02.295

19.    Moore, M. A., “Abrasive Wear”, in Treatise on Materials Science and Technology, Scott, D., Ed., Academic Press: New York, NY, USA, (1979), p. 217-257.

20.    Hewitt, S. A., Kibble, K. A., “Effects of ball milling time on the synthesis and consolidation of nanostructured WC-Co composites”, International Journal of Refractory Metals and Hard Materials, Vol. 27, No. 6, (2009), 937-948. DOI:10.1016/j.ijrmhm.2009.05.006

21.    Pang, C., Guo, Z., Luo, J., Hou, T., Bing, J., “Effect of vanadium on synthesis of WC nanopowders by thermal processing of V-doped tungsten precursor”, International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 3, (2010), 394-398. DOI:10.1016/j.ijrmhm.2009.12.006

22.    Blau, P. J., ASM Handbook, Volume 18-Friction, Lubrication, and Wear Technology, ASM International, (1992).

23.    Park, S. Y., Kim, M. C., Park, C. G., “Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment”, Materials Science and Engineering: A, Vol. 449-451, (2007), 894-897. DOI:10.1016/j.msea.2006.02.444

24.    Guilemany, J. M., De Paco, J. M., Miguel, J. R., Nutting, J., “Characterization of the W2C phase formed during the high velocity oxygen fuel spraying of a WC+12 Pct Co powder”, Metallurgical and Materials Transactions A, Vol. 30, No. 8, (1999), 1913-1921. DOI:10.1007/s11661-999-0002-3

25.    Wood, R. J., “Tribology of thermal sprayed WC–Co coatings”, International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 1, (2010), 82-94. DOI:10.1016/j.ijrmhm.2009.07.011

26.    Watanabe, M., Owada, A., Kuroda, S., Gotoh Y., “Effect of WC size on interface fracture toughness of WC–Co HVOF sprayed coatings”, Surface and Coatings Technology, Vol. 201, No. 3-4, (2006), 619-627. DOI:10.1016/j.surfcoat.2005.12.019

27.    Kear, B. H., Skandan, G., Sadangi, R. K., “Factors controlling decarburization in HVOF sprayed nano-WC/Co hard coatings”, Scripta Materialia, Vol. 44, No. 8-9, (2001), 1703-1707. DOI:10.1016/S1359-6462(01)00867-3

28.    Fullman, R. L., “Measurement of Particle Sizes in Opaque Bodies”, JOM-Journal of the Minerals, Metals and Materials Society, Vol. 5, No. 3, (1953), 447-452. DOI:10.1007/BF03398971

29.    Di Girolamo, G., Pilloni, L., Pulci, G., Marra, F., “Tribological Characterization of WC-Co Plasma Sprayed Coatings”, Journal of the American Ceramic Society, Vol. 92, No. 5, (2009), 1118-1124. DOI:10.1111/j.1551-2916.2009.03023.x

30.    Sánchez, E., Bannier, E., Salvador, M. D., Bonache, V., García, J. C., Morgiel, J., Grzonka, J., “Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings”, Journal of Thermal Spray Technology, Vol. 19, No. 5, (2010), 964-974. DOI:10.1007/s11666-010-9480-5
31.    Usmani, S., Sampath, S., Houck, D. L., Lee, D., “Effect of carbide particle size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings”, Tribology Transactions, Vol. 40, No. 3, (1997), 470-478.

32.    Sudaprasert, T., Shipway, P. H., McCartney, D. G., “Sliding wear behavior of HVOF sprayed WC-Co coatings deposited with both gas-fuelled and liquid-fuelled systems”, Wear, Vol. 255, No. 7-12, (2003), 943-949. DOI:10.1016/S0043-1648(03)00293-x

33.    Picas, J. A., Punset, M., Baile, M. T., Martin, E., Forn, A., “Properties of WC-CoCr Based Coatings Deposited by Different HVOF Thermal Spray Processes”, Plasma Processes and Polymers, Vol. 6, No. S1, (2009), S948-S953. DOI:10.1002/ppap.200932402

34.    Shaw, K. G., Gruninger, M. F., Jarosinski, W. J., “High temperature intermetallic binders for HVOF carbides”, In 1994 Thermal Spray Industrial Applications: Proceedings, (1994).

35.    Schwetzke, R., Kreye, H., “Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems”, Journal of Thermal Spray Technology, Vol. 8, No. 3, (1999), 433-439. DOI:10.1361/105996399770350395

36.    Stewart, D. A., Shipway, P. H., McCartney, D. G., “Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders”, Acta Materialia, Vol. 48, No. 7, (2000), 1593-1604. DOI:10.1016/S1359-6454(99)00440-1

37.    Ban, Z. G., Shaw, L. L., “Characterization of thermal sprayed nanostructured WC-Co coatings derived from nanocrystalline WC-18wt.% Co powders”, Journal of Thermal Spray Technology, Vol. 12, No. 1, (2003), 112-119. DOI:10.1361/105996303770348564

38.    Ishikawa, Y., Kuroda, S., Kawakita, J., Sakamoto, Y., Takaya, M., “Sliding Wear Properties of HVOF Sprayed WC-20% Cr3C2-7% Ni Cermet Coatings”, Surface and Coatings Technology, Vol. 201, No. 8, (2007), 4718-4727. DOI:10.1016/j.surfcoat.2006.10.007

39.    Rodriguez, M., Klisans, J., Bavaresco, L., Scagni, A., Arenas, F., “Wear resistance of HVOF sprayed carbide coatings”, In Thermal Spray 2001: New Surfaces for a New Millennium, Proceedings, International Thermal Spray Conference (ITSC 2001), Singapore, 28- 30 May, (2001), 1061-1068.

40.    Hutchings, I. M., “Tribology: Friction and Wear Engineering Materials”, Ed. Edward Arnold, a Division of Hodder Headline PLC., (1992), 273.

41.    Nahvi, S. M., Shipway, P. H., McCartney, D. G., “Particle motion and modes of wear in the dry sand-rubber wheel abrasion test”, Wear, Vol. 267, No. 11, (2009), 2083-2091. DOI:10.1016/j.wear.2009.08.013

42.    Stevenson, A. N. J., Hutchings, I. M., “Development of the dry sand rubber wheel abrasion test”, Wear, Vol. 195, No. 1-2, (1996), 232-240. DOI:10.1016/0043-1648(96)06965-7

43.    Tylczak, J. H., Hawk, J. A., Wilson, R. D., “A comparison of laboratory abrasion and field wear results”, Wear, Vol. 225-229, No. 2, (1999), 1059-1069. DOI:10.1016/S0043-1648(99)00043-5

44.    Blombery, R. I., Perrot, C. M., Robinson, P. M., “Abrasive wear of tungsten carbide-cobalt composites. I. Wear mechanisms”, Materials Science and Engineering, Vol. 13, No. 2, (1974), 93-100. DOI:10.1016/0025-5416(74)90176-1

45.    Chen, H., Xu, C., Zhou, Q., Hutchings, I. M., Shipway, P. H., Liu, J., “Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC-Co coatings”, Wear, Vol. 258, No. 1-4, (2005), 333-338. DOI:10.1016/j.wear.2004.09.044

46.    Lee, H. C., Gurland, J., “Hardness and deformation of cemented tungsten carbide”, Materials Science and Engineering, Vol. 33, No. 1, (1978), 125-133. DOI:10.1016/0025-5416(78)90163-5

47.    Nahvi, S. M., “Investigating the Abrasive Wear Resistance of Thermal-Sprayed WC-Based Coatings”, Advanced Ceramics Progress, Vol. 6, No. 2, (2020), 7-16. DOI:10.30501/ACP.2020.107360