Preparation and Characterization of Y3A5O12: Cr3+ Nanophosphor by Electrochemical Technique

Document Type: Original Research Article


1 Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkin Dasht, Alborz, Iran

2 School of Chemistry, College of Science, University of Tehran, Tehran, Iran


Y3A5O12:Cr3+ nanophosphor was synthesized by cathodic electrodeposition method. During the preparation procedure, hydroxide precursors were deposited on the surface of cathode via electrochemical reaction and then the final product was achieved by heat treatment of obtained powder at 1100 °C for 4 h. The structure and properties of the obtained product were investigated by various analysis methods such as X-Ray Diffraction (XRD), Fourier Transform InfraRed (FTIR) Spectroscopy, Photoluminescence Spectroscopy (PL), Scanning Electron Microscopy (SEM) and N2 adsorption-desorption analysis. The XRD patterns of the synthesized YAG: Cr product, were in good match with the pure Y3Al5O12 phase and the absence of any other impurities indicates the transformation of Cr3+ ions into the host matrix (YAG). In the emission spectrum of prepared material, a broad emission containing four pronounced bands at 685, 695, 710 and 725 nm was observed that indicates the presence of Cr3+ ions in the final product and further confirmed the formation of desired oxide product (YAG: Cr). The results of our studies showed that cathodic electrodeposition is a practical and highly efficient method for preparation of Y3A5O12:Cr3+ nanophosphor compound.


Main Subjects


  1. Blasse, G., Bril, A., “A new phosphor for flying-spot cathode-ray tubes for color television: yellow emitting Y3Al5O12-Ce3+”, Applied Physics Letters, Vol. 11, No. 2, (1967), 53–55. DOI:10.1063/1.1755025
  2. Piao, X. Q., Horikawa, T., Hanzawa, H., Machida, K. I., “Characterization and luminescence properties of Sr2Si5N8: Eu2+ phosphor for white light-emitting-diode illumination”, Applied Physics Letters, Vol. 88, No. 16, (2006), 161908. DOI:10.1063/1.2196064
  3. Wang, D. Y., Huang, C. H., Wu, Y. C., Chen, T. M., “BaZrSi3O9: Eu2+: a cyan-emitting phosphor with high quantum efficiency for white light-emitting diodes”, Journal of Materials Chemistry, Vol. 21, No. 29, (2011), 10818–10822. DOI:10.1039/C1JM00080B
  4. Geng, D., Li, G., Shang, M., Yang, D. M., Zhang, Y., Cheng, Z., Lin, J., “Color tuning via energy transfer in Sr3+ In (PO4)3:Ce3+/Tb 3+/Mn2+ phosphors”, Journal of Materials Chemistry, Vol. 22, No. 28, (2012), 14262–14271. DOI:10.1039/C2JM32392C
  5. Bardsley, N., Bland, S., Chwastyk, D., Monasterio, C. D., Pattison, L., Pattison, M., Welsh, F., Yamada, M., Solid state Lighting Research and Development, Manufacturing Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, (2013). Available at: (Accessed: September 2013)
  6. Lin, Y. C., You, J. P., Tran, N. T., He Y., Shi, F. G., “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration”, Journal of Electronic Packaging, Vol. 133, No. 1, (2011), 011009-0011014. DOI:10.1115/1.4003216
  7. Gluchowski, P., Pązik, R. , Hreniak, D., Stręk, W., “Luminescence properties of Cr3+: Y3Al5O12 nanocrystals”, Journal of Luminescence, Vol. 129, No. 5, (2009), 548–553. DOI:10.1016/j.jlumin.2008.12.012
  8. Smith, B. A., Dabestani, R. T.,  Lewis, L. A., T., Thompson, C. V., Collins, C. T., Aytug, C., “Synthesis and Luminescence Characteristics of Cr3+ doped Y3Al5O12 Phosphors”, (No. ORNL/TM-2015/627). Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2015). DOI:10.2172/1223077
  9. Dudnikova, V. B., Zharikov, E. V., Urusov , V. S., “Concentration of Cr4+ impurity ions and color centers as an indicator of saturation of forsterite crystals Mg2SiO4 with oxygen”, Physics of the Solid state, Vol. 52, No. 9, (2010), 1865–1873. DOI:10.1134/S1063783410090131
  10. Ali, H., Abou Kana, M. T., Khedr, M. A., “Spectroscopy and Optical Properties of Sm3+: YAG Nano crystalline Powder Prepared by Co-Precipitation Method: Effect of Sm3+ Ions Concentrations”, Open Journal of Applied Sciences, Vol. 4, (2014), 96-102. DOI:10.4236/ojapps.2014.43011
  11. Li, X., Li, Q., Wang, J., Yang, S.,, “Synthesis of YAG: Eu phosphors with spherical morphology by solvo-thermal method and their luminescent property”, Materials Science and Engineering: B, Vol. 131, No. 1-3, (2006), 32–35. DOI:10.1016/j.mseb.2005.12.022
  12. Zhou, S., Fu, Z., Zhang, J., Zhang, S., “Spectral properties of rare-earth ions in nanocrystalline YAG: Re (Re = Ce3+, Pr3+, Tb3+)”, Journal of Luminescence, Vol. 118, No. 2, (2006), 179–185. DOI:10.1016/j.jlumin.2005.08.011
  13. Yang, H., Kim, Y. S., “Energy transfer-based spectral properties of Tb-, Pr-, or Sm co doped YAG: Ce nanocrystalline phosphors”, Journal of Luminescence, Vol. 128, No. 10, (2008), 1570–1576. DOI:10.1016/j.jlumin.2008.03.003
  14. Ma, X., Lv, Z., Tan, H., Nan, J., Wang, C., Wang, X., “Preparation and grain-growth of chromia-yttrium aluminum garnet composites fibers by sol–gel method”, Journal of Sol-Gel Science and Technology, Vol. 83, No. 2, (2017), 275-280. DOI:10.1007/s10971-017-4410-3
  15. Sheu, H. H., Jian, S. Y., Lin, T. T., Lee, Y. W., “Effect of rotational speed of an electromagnetic stirrer on neodymium-doped yttrium aluminum garnet nanoparticle size during co-precipitation”, Microelectronic Engineering, Vol. 176, (2017), 33-39. DOI:10.1016/j.mee.2017.01.020
  16. Ramanujam, P., Vaidhyanathan, B., Binner, J., Ghanizadeh, S., Zhou, Z., Spacie, C., “Rapid synthesis of nanocrystalline YAG via microwave assisted solvothermal process”, Journal of the American Ceramic Society, Vol. 101, No. 11, (2018), 4864-4869. DOI:10.1111/jace.15815
  17. Carreira, J. F. C., Sedrine, N. B., Monteiro, T., Rino, L., “YAG: Dy–Based single white light emitting phosphor produced by solution combustion synthesis”, Journal of Luminescence, Vol. 183, (2017), 251-258. DOI:10.1016/j.jlumin.2016.11.017
  18. Hosseinifard, M., Badiei, A., Ahmadi, K., “Synthesis and characterization of yttrium aluminum garnet nanostructures by cathodic electrodeposition method”, Advanced Powder Technology, Vol. 28, No. 2, (2017), 411-418. DOI:10.1016/j.apt.2016.10.012
  19. Hosseinifard, M., Goldooz, H., Badiei, A., Ahmadi, K., “Synthesis, Characterization and Luminescence Properties of YAG:RE (Ce, Sm and Gd) Nanophosphor by Cathodic Electrodeposition Method”, Russian Journal of Electrochemistry, Vol. 56, No. 2, (2020), 174–179. DOI:10.1134/S102319352001005X
  20. Hosseinifard, M., Ahmadi, K., Badiei, A., “Cathodic Electrodeposition and Characterization of YAG Nanostructure: Effect Current Density on the Morphology”, Advanced Ceramics Progress, Vol. 4, No. 2, (2018), 32-36. DOI:10.30501/ACP.2018.91123
  21. Patterson, A. L., “The Scherrer Formula for X-Ray Particle Size Determination”, Physical Review, Vol. 56, No. 10, (1939), 978. DOI:10.1103/PhysRev.56.978
  22. Aghazadeh, M., Dalvand, S., Hosseinifard, M., “Facile electrochemical synthesis of uniform β-Co (OH)2 nanoplates for high performance supercapacitors”, Ceramics International,  Vol. 40, No. 2, (2014), 3485-3493. DOI:10.1016/j.ceramint.2013.09.081
  23. Ţălu, Ş., Micro and nanoscale characterization of three dimensional surfaces. Basics and applications, Napoca Star Publishing House, Cluj-Napoca, Romania, (2015).
  24. Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., Fatoba, O. S., Akinlabi, S. A., Ţălu, Ş., “Chapter two - Advances in manufacturing analysis: fractal theory in modern manufacturing” In Kumar, K., Davim, J. P., (eds.), Modern Manufacturing Processes, Woodhead Publishing Reviews: Mechanical Engineering Series, (2020), 13-39. DOI: 10.1016/B978-0-12-819496-6.00002-6
  25. Muresan, L. E., Popovici, E. J., Bica, E., Cadis, A. I., Perhaita, I., Tudoran, L. B., “Investigation of thermal decomposition of yttrium–aluminumbased precursors for YAG phosphors”, Journal of Thermal Analysis and Calorimetry, Vol. 110, No. 1, (2012), 341-348. DOI:10.1007/s10973-012-2374-7