Synthesis of FAp, Forsterite, and FAp/Forsterite Nanocomposites by Sol-gel Method

Document Type: Original Research Article

Authors

1 Department of Materials Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

2 Department of Materials Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran

3 Department of Urology, Maastricht University, The Netherlands

Abstract

The present study aims to investigate the preparation and evaluation of phase and morphological properties of a nano biocomposite ceramic. In this regard, the synthesis of fluorapatite (FAp) as the first phase and forsterite considered as the second phase by the sol-gel method was taken into account. Then, nanocomposites with the base of fluorapatite with 15, 25, and 35 wt% of forsterite were synthesized using the sol-gel method. The synthesized nanoparticles and nanocomposites were characterized by using different techniques, Field Emission Scanning Electron Microscope (FESEM), X-Ray Powder Diffraction (XRD), and Fourier-Transform Infrared (FT-IR) Spectroscopy. X-ray diffraction test results as well as infrared spectroscopy indicated that fluorapatite, forsterite, and fluorapatite/forsterite nanocomposites were produced without impurity. FESEM result showed that the particle sizes of the produced nanocomposites with 15, 25, and 35 wt% of forsterite ranged approximately between 25 and 80 nm. The result of the MTT assay proved the nontoxicity of samples for 7 days.

Keywords

Main Subjects


 

1.      Manafi, S., Joughehdoust, S., “Synthesis and in vitro investigation of sol-gel derived bioglass-58S nanopowders”, Materials Science-Poland, Vol. 30, (2012), 45–52. DOI:10.2478/s13536-012-0007-2

2.      Hiraga, T., Miyazaki, T., Tasaka, M., Yoshida, H., “Mantle Superplasticity and Self-made Demise”, Nature, Vol. 468, (2010), 1091–1094. DOI:10.1038/nature09685

3.      Johnson, C.H., Richter, S.K., Hamilton, C.H., Hoyt, J.J., “Static Grain Growth in a Microduplex Ti-6Al-4V alloy”, Acta Materialia, Vol. 47, (1998), 23–29. DOI:10.1016/S1359-6454(98)00341-3

 4.     Sun, Y., Yang, H., Tao, D., “Microemulsion Process Synthesis of lanthanide-doped Hydroxyapatite Nanoparticles under Hydrothermal  Treatment”, Ceramics International, Vol. 37, (2011), 2917-2920. DOI:10.1016/j.ceramint.2011.03.030

5.      Sumathi, S., Gopal, B., “In Vitro Degradation of Multisubstituted  Hydroxyapatite and Fluorapatite in the Physiological Condition”, Journal of Crystal Growth, Vol. 422, (2015), 36-43. DOI:10.1016/j.jcrysgro.2015.04.022

6.      Choudhary, R., Chatterjee, A., Venkatraman, S., Koppala, S., Abraham, J., “Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for load bearing applications”, Bioactive Materials, Vol. 3, (2018), 218-224. DOI:10.1016/j.bioactmat.2018.03.003

7.      Basar, B., Tezcaner, A., Keskin, D., Evis, Z., Improvements in Microstructural, Mechanical, and Biocompatibility Properties of nano-sized Hydroxyapatites Doped with Yttrium and Fluoride, Ceramics International, Vol. 36, (2010), 1633-1643. DOI:10.1016/j.ceramint.2010.02.033

8.      Kheradmandfard, M., Fathi, M., “Preparation and Characterization of Mg-doped Fluorapatite Nanopowders by Sol-Gel Method”, Journal of Alloys and Compounds, Vol. 504, (2010), 141-145. DOI:10.1016/j.jallcom.2010.05.073

9.      Mancuso, E., Bretcanu, O., Marshall, M., Dalgarno, K.W., “Sensitivity of Novel Silicate and Borate-Based Glass Structures on In vitro Bioactivity and Degradation Behaviour”, Ceramics International, Vol. 43, (2017), 12651-12657. DOI:10.1016/j.ceramint.2017.06.146

10.    Chen, W., Wang, Q., Meng, S., Yang, P., Jiang, L., Zou, X., Li, Z., Hu, S., “Temperature-Related Changes of Ca and P Release in Synthesized Hydroxylapatite, Geological Fluorapatite, and Bone Bioapatite”, Chemical Geology, Vol. 451, (2017), 183-188. DOI:10.1016/j.chemgeo.2017.01.014

11.    Barandehfard, F., Rad, M.K., Hosseinnia, A., Khoshroo, K., Tahriri, M., Jazayeri, H.E., Moharamzadeh, K., Tayebi, L., “The Addition of Synthesized Hydroxyapatite and Fluorapatite Nanoparticles to a Glass-Ionomer Cement for Dental Restoration and its Effects on Mechanical Properties”, Ceramics International, Vol. 42, (2016), 17866-17875. DOI:10.1016/j.ceramint.2016.08.122

12.    Santos, S.C., Barreto, L.S., dos Santos, E.A., “Nanocrystalline Apatite Formation on Bioactive Glass in a Sol-Gel Synthesis”, Journal of Non-Crystalline Solids, Vol 439, (2016), 30-37. DOI:10.1016/j.jnoncrysol.2016.02.013

13.    Shen, J., Jin, B., Jian, Q. Y., Hu, Y. M., Wang, X. Y., “Morphology-Controlled Synthesis of Fluorapatite Nano/Microstructures via Surfactant-Assisted Hydrothermal Process”, Materials & Design, Vol. 97, (2016), 204-212. DOI:10.1016/j.matdes.2016.02.091

14.    Sumathi, S., Gopal, B., “In vitro Degradation of Multisubstituted Hydroxyapatite and Fluorapatite in the Physiological Condition”, Journal of Crystal Growth, Vol. 422, (2015), 36-43. DOI:10.1016/j.jcrysgro.2015.04.022

15.    Roche, K. J., Stanton, K. T., “Measurement of Fluoride Substitution in Precipitated Fluorhydroxyapatite Nanoparticles”, Journal of Fluorine Chemistry, Vol. 161, (2014), 102-109. DOI:10.1016/j.jfluchem.2014.02.007

16.    Zhao, J., Dong, X., Bian, M., Zhao, J., Zhang, Y., Sun, Y., Chen, J., Wang, X., “Solution Combustion Method for Synthesis of Nanostructured Hydroxyapatite, Fluorapatite and Chlorapatite”, Applied Surface Science, Vol. 314, (2014) 1026-1033. DOI:10.1016/j.apsusc.2014.06.075

17.    Tredwin, C. J., Georgiou, G., Kim, H. W., Knowles, J. C., “Hydroxyapatite, Fluor-hydroxyapatite, and Fluorapatite Produced via the Sol-Gel Method: Bonding to Titanium and Scanning Electron  Microscopy”, Dental Materials, (2013), 521-529. DOI:10.1016/j.dental.2013.02.002

18.    Nasiri-Tabrizi, B., Fahami, A., “Synthesis and Characterization of  Fluorapatite–Zirconia Composite Nanopowders”, Ceramics International, Vol. 39, (2013), 4329-4337. DOI:10.1016/j.ceramint.2012.11.016

19.    Joughehdoust, S., Behnamghader, A., Jahandideh, R., Manafi, S., “Effect of Aging Temperature on Formation of Sol-Gel Derived Fluor-Hydroxyapatite Nanoparticles”, Journal of nanoscience and nanotechnology, Vol. 10, (2010), 2892-2896. DOI:10.1166/jnn.2010.1397

20.    Cooper, L.F., Zhou, Y., Takebe, J., Guo, J., Abron, A., Holmén, A., Ellingsen, J.E., “Fluoride Modification Effects on Osteoblast Behavior and Bone Formation at TiO2 Grit-blasted CP Titanium  Endosseous Implants”, Biomaterials, Vol. 27, (2006), 926-936. DOI:10.1016/j.biomaterials.2005.07.009

21.    Rodrıguez-Lorenzo, L., Hart, J., Gross, K., “Influence of Fluorine in the Synthesis of Apatites. Synthesis of Solid Solutions of Hydroxy-Fluorapatite”, Biomaterials, Vol. 24, (2003), 3777-3785. DOI:10.1016/S0142-9612(03)00259-X

22.    Loher, S., Stark, W.J., Maciejewski, M., Baiker, A., Pratsinis, S.E., Reichardt, D., Maspero, F., Krumeich, F. and Günther, D., “Fluoroapatite and Calcium Phosphate Nanoparticles by Flame Synthesis”, Chemistry of Materials, Vol. 17, (2005), 36-42. DOI:10.1021/cm048776c

23.    Rey, C., Combes, C., Drouet, C., Sfihi, H., “Fluoride-based Bioceramics” In Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Amsterdam: Elsevier, (2008), 279-331. DOI:10.1016/B978-0-444-53086-8.00006-0

24.    Chitsazi, M.T., Shirmohammadi, A., Faramarzie, M., Pourabbas, R., Rostamzadeh, A.N., “A Clinical Comparison of Nano-Crystalline Hydroxyapatite (Ostim) and Autogenous Bone Graft in the Treatment of Periodontal Intrabony Defects”, Medicina Oral Patologia Oral y Cirugia Bucal, Vol. 16, (2011), 448-453. DOI:10.4317/medoral.16.e448

25.    Nguyen, M., Sokolar, R., “Presence of Magnesium-Alumina  Spinel in Forsterite Ceramics and its Influence During Sintering and on Resulting Properties of  Fired body”, IOP Conference Series: Materials Science and Engineering, Czech Republic, Vol. 549, (June. 1, 2019), 2019. DOI:10.1088/1757-899X/549/1/012025

26.    Wassanai, W., Jidapah, R., Pana, S., “Appropriate Forming Conditions for Hydroxyapatite-Bioactive Glass Compact Scaffold”, Engineering Journal, Vol. 20, (2016), 123-134. DOI:10.4186/ej.2016.20.3.123

27.    Ni, S., Chou, L ., “Preparation and Characterization of Forsterite (Mg, SiO4) Bioceramics”, Ceramics International, Vol. 33, (2007), 83-88. DOI:10.1016/j.ceramint.2005.07.021

28.    Chin, K. M., Lee, K. Y., Tan, C. Y., Singh, R., Teng, W. D., “Characterization of Forsterite Synthesized by Solid-State Reaction with Ball Milling Method”, Applied Mechanics and Materials, Vol. 372, (2013), 416-419. DOI:10.4028/www.scientific.net/AMM.372.416

29.    Petric, N., Martinac, V., Tkalcec, E., Ivankovic, V., Petric, B., “Thermodynamic Analysis of  Results Obtained by Examination of the Forsterite and Spinel Formation Reactions in the Process of Magnesium Oxide Sintering”, Industrial & Engineering Chemistry Research, Vol. 28, (1989), 298–302. DOI:10.1021/ie00087a008

30.    Mazrooei Sebdani, M., Fathi, M. H., “Preparation and characterization of hydroxyapatite–forsterite–bioactive glass nanocomposite coatings for biomedical applications”, Ceramics International, Vol. 38, (2012), 1325-1330. DOI:10.1016/j.ceramint.2011.09.008

31.    Forghani, A., Mapar, M., Kharaziha, M., Fathi, M. H., Fesharaki, M., “Novel Fluorapatite‐Forsterite Nanocomposite Powder for Oral Bone Defects”, International Journal of Applied Ceramic Technology, Vol. 10, (2012), E282-E289. DOI:10.1111/j.1744-7402.2012.02824.x