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In recent years, application of Hydroxyapatite (HA) as the coating on metal substrates for biological 
stabilization of implants, stimulation of bone growth around the implant, and optimization of recovery time 

has attracted the attention of many researchers around the world. In this regard, the current study presented 

a review of HA and its composite coatings for tissue engineering applications. HA is one of the bioceramics 
that has been an interesting subject of research in recent years owing to its in-vitro bioactivity, 

osteoinduction, and osteoconduction properties. According to the previous reports, coated implants were 

performed successfully to achieve high corrosion resistance, bone growth and regeneration, and reduction 
of corrosion current density. The current research presented a review of the previous research works on the 

coating mechanism, physico-mechanical, in-vitro bioactivity, and biocompatibility properties of HA and 

its composite coatings on substrates. The obtained results revealed that HA and its composites had a 
synergistic effect on the metal substrates in terms of improving corrosion resistance, providing 

biocompatibility, direct bonding to tissue, accelerating treatment, and reducing costs imposed on the health 

care sector. 
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1. INTRODUCTION 
 

Stainless steel, Mg, Mg aloys, titanium, and titanium 

alloy are some of the metals used in the production of 

bone implants [1-5]. Due to the supply of suitable 

mechanical properties, implants have been used for 

several years to stabilize bones, teeth, and joints. Metals 

corrode in the body fluid that results in the release of 

metal ions around the tissue, hence the apearance of side 

effects. For this reason, surface treatment is required to 

improve the biocompatibility as well as bioactivity, 

reinforce the connection to bone tissue, and promote 

bone formation by proliferation of osteoblast cells. In this 

regard, in order to improve the surface properties of the 

metal implants, biocompatible and bioactive materials 

should be coated [6-8]. 

Hydroxyapatite (HA) is a bioactive calcium phosphate 

ceramic with the chemical formula of [Ca10(PO4)6(OH)2] 

[9-12]. Owing to its chemical and crystallographic 

characteristics similarity to the human bone, HA is 

currently utilized in the field of bone tissue repair and 

reconstruction and as bioactive coating on different metal 
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substrates for orthopedic applications [6,9,13-15]. Given 

that HA is mainly composed of calcium and phosphate 

and that its chemical composition and crystal structure 

are similar to the mineral content of the human bone, the 

biocompatible and bioactive and other related products 

are generally not dangerous for cell viability [16]. In 

addition, in clinical applications, HA ensures new bone 

formation due to its controlled biodegradability [17]. 

Hence, HA is used in various medical applications such 

as bioactive coatings on the bone metal implants, ear 

implants, dental materials, and tissue engineering 

applications [18-20]. However, HA has some drawbacks 

such as its low mechanical properties and low fracture 

toughness [21]. Therefore, it does not conform to the 

mechanical properties of the human bone, which is 

considered an obstacle to its in-vivo applications [22]. 

Therefore, reinforcements such as Al2O3, TiO2, Y2O3, 

Ni3Al, and carbon nanotubes (CNTs) are composited 

with HA to enhance its mechanical characteristics 

[23-27]. However, the presence of these enhancers can 

sometimes cause damages to the surrounding tissues. For 

instance, HA decomposition occurs during the procedure 

manufacturing through ZrO2, which leads to a significant 

degrade in the biological behavior of HA [26]. 

Therefore, according to the factors mentioned above, 

HA has a high potential for bone tissue engineering 

applications, drug release, and bioactive coatings. In this 

review study, we attemted to cover the methods for HA 

coating and investigate the HA reinforcing materials on 

the metal substrates as much as possible. Hence, it is 

expected that this review study will be utilized as a 

practical reference for researches. 

 

 

2. COATING TECHNIQUES 
 
2.1. Sol-Gel 

In sol-gel method, inorganic polymers/ceramics are 

obtained through converting solutes-soluble precursors 

into sol and then into a lattice structure called a gel [28]. 

This method enjoys several advantages namely its choice 

of coating composition, coating of complicated 

structures, homogeneity of the coating, and simplicity of 

the procedure [28]. On the contrary, the limitations of this 

method are the slow speed of the process and presence of 

inherent cracks [29]. Ca(NO3)24H2O and P2O5 are 

usually used as precursors to prepare the HA sol. In 

addition, the most common solvent for dissolving the 

existing precursors is pure ethanol, to which a small 

amount of water is added to increase the hydrolysis of the 

prepared sol [29]. Then, the resultant solution is exposed 

to different temperatures at different time intervals to 

achieve the desired viscosity, evaporate the existing 

solvent, and obtain a sol-gel state [29]. Finally, the 

prepared sol-gel is subjected to aging, drying, and 

calcination processes to make it ready for use. It should 

be noted that to date, the sol-gel method has been 

extensively utilized to coat the HA and HA composites 

on metal substrates [30-33]. Figure 1a presents a 

schematic of the overall sol-gel immersion coating 

procedure. 

 

2.2. Electrophoretic Deposition (EPD) 
Electrophoretic Deposition (EPD) is a colloidal 

process in which the charged particles in suspension are 

coated by applying an electric field to a conductive 

electrode (Figure 1b) [34]. However, in the EPD 

tecnique, application of water as a solvent is limited 

owing to electrolysis and production of small bubbles 

near the electrode. High adaptability and inclusion of a 

wide range of materials are among the effective factors 

that have drawn considerbale attention to this method. It 

is worth noting that creating a stable suspension where 

the particles are well distributed inside the solvent is one 

of the important stages of EPD that should be further 

explored by researchers [35]. However, the 

disadvantages of this method can be remedied by 

reducing the ionic conductivity of water [35]. Moreover, 

the applied EPD method was utilized to coat different 

composites of HA on the metal substrates [36-39]. 

 

2.3.Thermal Spraying (TS) 
Thermal Spraying (TS) method is among the physical 

deposition techniques for creating HA coatings. This 

technique is based on processes in which coating 

materials are heated and sprayed on the substrate. The 

reasons for using thermal spray coating are to protect the 

surface against physical corrosion, abrasion and 

scratches, chemical corrosion, electrical corrosion and 

oxidation [6]. It should be noted that through the TS 

method, Ti/HA composite coating can be applied on a 

stainless steel substrate that yields interesting  

physico-chemical results [40]. 

 

2.4. Physical Vapor Deposition (PVD) 
Coating from vapor phase involves a wide range of 

vacuum coating processes in which materials are 

physically separated from a source through evaporation 

and transferred as a film on the surface of the substrate 

through a partial vacuum (Figure 1c) [41]. Deposition of 

the thin layers of the vapor phase is accomplished using 

a variety of techniques used in the optical, tribology, 

energy storage, and medical industries [41,42]. 

Moreover, this technique was employed to coat HA on 

the Ti–35Nb–xZ substrate [43]. 

 

2.5. Biomimetic Deposition (BD) 
When the coating is formed under physiological 

conditions, it is called biomimetic (Figure 1d). This 

method was developed by researchers through forming a 

layer consisting of calcium and phosphate on a titanium 

substrate in a simulated body fluid [44]. The figure below 

exhibits a bioactive apatite coating formed by a 

biomimetic method on a substrate. Of note, formation of 
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the calcium phosphate layer is also indicative of the 

substrate bioactivity [45]. To date, the biomimetic 

deposition (BD) method has been used to coat HA on 

deferent metal substrates such as stainless steel, Ti, and 

TiO2 [46-48]. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Schematics of HA coating through Sol-Gel, EPD, 

PVD, and BD, respectiveley (a-d) [34,41,49,50] 

 

 

3. HA COMPOSITE COATING ON METAL SUBSTRATES 
 
3.1. HA/Graphen Oxide 

Owing to its high specific surface area, controlled drug 

release, good biocompatibility, and high stability 

Graphene oxide (GO) is widely used in various biological 

applications including biosensors, bio-imaging, and 

tissue engineering scaffolds [51,52]. In addition, GO is 

characterized by other acceptable mechanical properties. 

Among the effective factors involved in the stability of 

GO in solution are the oxygen groups that are placed on 

the edges and plates that facilitate applications of GO as 

an enhancer in biocomposites [53]. It should be noted that 

based on the previous report, upon adding 1 % by weight 

of GO to the composite composition, a significant 

increase in the biological and mechanical characteristics 

of the final sample was achieved. In addition, according 

to the literature data, in the presence of GO and HA 

nanoparticles, a significant increase in the bioactivity of 

gelatin and Polycaprolactone (PCL) was observed [54]. 

In a study by Sebastin et al., HA/GO composite coating 

was applied on the 316L stainless steel substrate. 

According to the results of this study, cell viability was 

reported to be above 95 % for HA composite coating 

containing 2 % by weight of GO (Figure 2a). In addition, 

the corrosion resistance of the HA/GO composite coating 

was significantly improved, compared to HA alone 

(Figure 2b and Figure 2c) [55]. 

 

3.2. HA/TiO2 

In recent years, TiO2 has been highly acknowledged by 

researchers as a bioactive coating [56-58]. TiO2 is 

characterized by good biocompatibility and good 

chemical stability in physiological environments [37]. 

Additionally, TiO2 is currently used in biological 

applications such as drug delivery systems, bio-imaging, 

and  cancer  treatment [59-61]. Studies  highlighted  that 
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(a) 

 
(b) 

 
(c) 

Figure 2. Viability of MG-63 cell lines (a), Nyquist (b), and 

Bode (c) plots [55] 

 
HA and TiO2 coatings could provide higher mechanical 

characteristics than neat HA coatings when TiO2 was in 

the range of 20 to 25 by weight [62,63]. These results 

were further employed to design more complicated 

structures with the ability to improve the biological and 

mechanical properties of the HA-based bioactive 

coatings [63]. According to the morphological 

investigations, the prepared HA coating is characterized 

by a porous morphology. In this case, an increase in the 

amount of TiO2 leads to the higher density of the 

composite coatings, which increases the adhesion 

strength of the coating and enhances the bond between 

coating and substrate (Figure 3) [37]. 

 

  
(a) (b) 

  

(c) (d) 

Figure 3. SEM images of HA / TiO2 coatings deposited on 

316L stainless steel [37] 

 

3.3. HA/Chitosan 
Biodegradable polymers are widely utilized in 

composite preparation [12,64,65]. Chitosan (CS) proved 

to be an excellent matrix for HA and HA composites. It 

is also a biocompatible, biodegradable, and available 

biopolymer [12,66]. Although CS has unique properties 

such as biocompatibility, non-toxicity, and antibacterial 

effect, it fails in binding to the bone [67]. According to 

the previous research work [68], CS coatings applied as 

a composite with HA on 316 L substrate revealed high in 

vitro bioactivity, biocompatibility, and corrosion 

resistance properties (Figure 4). In this study, the value 

range of 3.66-18.98 was the reported in GPa for Young’s 

modulus [68]. 

The research studies conducted in recent years on the 

HA composites as a coating on mainly metallic substrates 

are presented in Table 1. In addition, a summary of the 

results already obtained regarding the addition of a new 

material to HA in the coating is reported. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4. SEM images of the different concentrations of Mg 

doped HAp/CTS coatings on the 316L (a-d) and NIH 3T3 

fibroblast cell viability results (e) [66] 

 

TABLE 1. Hydroxyapatite composite coatings that have 

attracted the attention of researchers in recent years 

HA Composite 

Coatings 
Results References 

Zn Good biomineralization 

capacity, conversion of HA 
tissue to bone-like tissue, 

biocompatibility, bioactive, 

antibacterial 

[69-74] 

Graphene Oxide Compact structure, increasing 

corrosion resistance, 
antibacterial, improving 

hardness and elastic modulus, 

biocompatibility 

[55,75-79] 

Carbon Nanotube Increasing the shear strength 

between the surface of the 

implant and the coating, 

improving hardness and elastic 
modulus 

[80-83] 

Chitosan (CS) Bioactive, biocompatibility, 
increasing corrosion resistance, 

antibacterial 

[39,66,84-87] 

Gelatin Biocompatibility, bioactive 

osteogenesis, improving 
mechanichal properties 

[88-90] 

Collagen Conversion of coating tissue to 
bone-like tissue, bioactive, 

improving coating bonding 

strength, osteogenesis 

[91-94] 

MgO Increasing corrosion 

resistance,control of corrision 
of Mg substrate 

[95,96] 

TiO2 Improving coating bonding 
strength, bioactiv, 

biocompatibility, decreasing 

prosity, increasing corrosion 
resistance, Improving scratch 

resistance 

[37,63,97,98] 

ZnO Increasing corrosion 

resistance, antibacterial, load 

bearing, osteogenesis, 
improving coating bonding 

strength 

[99-102] 

 
3.4. HA/CNT 

In a study conducted by Nabipour et al., HA/CNT 

composite coating was applied on the stainless steel 

substrate through EPD technique and then investigated. 

In this type of coating, the presence of CNT filled the 

gaps between the HA nanoparticles and prevented the 

formation of microcracks. As a result, the weight of HA-

5 wt. % CNT coating became less than that of HA coating 

due to the lower density of CNT than that of HA particles. 

According to our observations, addition of CNT 

improved the uniformity of the coating; therefore, almost 

no difference was observed in the thickness of the coating 

[103]. 

According to the previous reports, one of the main 

applications of HA is a biocompatible and bioactive 

coating in all kinds of metal implants. Of note, the 

bioceramics based on the HA greatly reinforced the 

connection of bone cells to the implanted biological 

material and thus increased the integration of the cell with 

the biological material. As a result, the proliferation of 

the bone cells also increased. In other words, the HA 

coating stimulates the bone growth and consequently 

restores the lost bone [38,104]. In case the HA is placed 

in the human body, it facilitates the recovery and 

regeneration of the lost or damaged bone tissue mainly 

due to the type of protein called osteocalcin, which is a 

non-collagenous bone protein. Previous Studies revealed 

that osteocalcin protein could form the bonds with the 

calcium ions in HA [105,106]. It should be noted that 

HA, as a widely used biological material, does not cause 

toxicity in the body [107]. 

However, while using HA, researchers face a series of 

challenges anmely the poor mechanical properties such 

as brittleness and low fracture toughness as well as low 

hardness, low load bearing capacity, and migration from 

the implant site and spread in the tissue that cause some 

problems such as deposition in the lymph nodes, 

cartilage, and bone marrow. 
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The solution proposed in the research literature for the 

first limitation is the coating of HA on the metal implants, 

use of reinforcing materials, and formation of 

composites. Examples of these methods were reported in 

detail in Table 1. Additionally, the proposed solution for 

the second challenge suggests adding the organic and 

polymer materials along with HA. These materials 

improved the adhesion of HA to the implant and 

prevented its dispersion in the body. Hence, new HA 

composites can compensate for its drawbacks [108-110]. 

Moreover, one of the main challenges in using HA 

composites is that the adhesion strength of these 

composites in processing methods such as EPD is not 

enough, and other coating methods such as PVD are not 

cost-effective despite providing adequate adhesion. On 

the contrary, use of some polymeric materials is alos 

bound to some limitations such as toxicity and 

uncontrollable biodegradability [111-113]. Given what 

was already mentioned, more and more detailed research 

is still needed in this field. 

In addition, in recent years, with the scientific 

advancements and emergence of nanotechnology, these 

coatings have become nanoscale. In addition to the 

greater adhesion to the substrate in this scale, porosity 

and microcracks are eliminated, hence improvements in 

mechanical properties and corrosion resistance. It was 

proved that nanomaterials interacted with cells better 

than their counterparts due to their dimensions and 

consequently yielded better results [38,104]. 

Among the challenges ahead in the field of coating HA 

composites on the metal substrates are: 

1. Introducing the appropriate coating method in such a 

way that by changing the coating parameters, we can 

obtain a coating with appropriate adhesion and 

mechanical properties. 

2. Using suitable polymers in such a way that they are 

biocompatible and at the same tiem, they ensure 

improvement of the HA adhesion to the substrate. 

3. Using suitable ceramic materials of micron or nano in 

size to have a positive effect on the mechanical 

properties and biological properties of HA. 

4. Using suitable metal nanoparticles to improve the 

biological properties of the HA coatings and bring the 

coating tissue closer to the bone tissue. 

 

 

4. CONCLUSIONS 
 

In the present review study, the authors attempted to 

investigate the physico-mechanical and biological 

characteristics of HA. In addition, a brief summary of the 

coating methods and HA composite coatings were 

presented. The main findings of the present research are 

briefly stated below: 

1. The mechanical properties of HA and bioactivity of 

metal substrates, especially 316 L stainless steel, were 

enhanced by HA/metal substrate composites. 

2. Sol-gel, EPD, TS, PVD, and BD were among the 

effective techniques for coating HA on the metal 

substrates. 

3. GO/HA composite was the main cause of more than 

95 % cell viability. 

4. The combination of HA and TiO2 as a composite 

played an effective role in reducing the porosity of the 

coatings. 

5. HA/CS composite coatings applied on 316L stainless 

steel revealed proper corrosion resistance and 

biological properties. 
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