Characterization and Bioactivity of a Quaternary Phosphate-based Glass Powder Synthesized by Sol-Gel Method

Document Type: Original Research Article


1 Department of Materials Science and Ceramics, University of Tabriz, Tabriz, Iran

2 Faculty of Chemistry, Urmia University, Urmia, Iran


Phosphate-based glasses are suitable candidates for biomedical applications due to their porous structure. This study illustrates the properties and structural characterization of titanium-phosphate glass powders in the 55(P2O5)-25(CaO)-(20-x)(Na2O)-x(TiO2), (x= 5, 10, 15) systems, which were prepared via sol-gel method. For this purpose, precursors of P2O5, CaO, Na2O, and TiO2 were added together dropwise on the magnetic stirrer after diluting or dissolving in ethanol. After gel formation, drying was done for various time periods at 60, 120, 180 and 200 °C. The structural and thermal properties of the obtained stabilized sol-gel glass powders were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Simultaneous Thermal Analysis (STA), Brunauer-Emmett-Teller surface area, porosity analyzer (BET), and Scanning Electron Microscopy (SEM). The XRD results confirmed the amorphous and glassy nature of the prepared samples. FT-IR Spectroscopy results showed that the local structure of glasses changed with increasing TiO2 content. As TiO2 content increased in the glass structure, the phosphate connectivity increased. It was indicated that the addition of TiO2 correlated unequivocally with an increase in glass stability. Also, to assess specimen’s bioactivity, the samples were soaked in Simulated Body Fluid (SBF) for 7 days. The results of this study suggested that glass composition had a significant influence on apatite-forming ability, indicating the possibility to customize the properties of this class of materials towards the biomedical applications.


Main Subjects


  1. Alonso L. M., Garcıa-Menocal J. A. D., Aymerich M. T., Guichard J. A. A., Garcıa-Valles M., Manent S. M., Ginebra M., “Calcium phosphate glasses: Silanation process and effect on the bioactivity behavior of Glass-PMMA composites”, Journal of biomedical materials research B: applied biomaterials, Vol. 00B, (2013), 1-9.
  2. Mukundan L. M., Nirmal R., Vaikkath D., Nair P. D., “A new synthesis route to high surface area sol-gel bioactive glass through alcohol washing”, Biomaterials, Vol. 3, No. 2, (2013), e24288; 1-10.
  3. Wilson J., D. Nicolletti, Yamamuro T., Hench L. L., Wilson J., “Bonding of soft tissues to bioglass. In: Handbook of bioactive ceramics: bioactive glasses and glass-ceramics”, Boca Raton FL: CRC Press, (1990), 283-302.
  4. Wilson J., Pigott G. H., Schoen F. J., Hench L. L., “Toxicology and biocompatibility of bioglasses”, Journal of biomedical materials research, Vol. 15, (1981), 805-817.
  5. Tan A., Romanska H. M., Lenza R., Jones J., Polak J. M., Bishop A. E., “The effect of 58S bioactive sol-gel derived foams on the growth of murine lung epithelial cells”, Key Engineering Materials, Vol. 240, No. 242, (2003), 719-724.
  6. Verrier S., Blaker J. J., Maquet V., Hench L. L., Boccaccini A. R., “PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment”, Biomaterials, Vol. 25, (2004), 3013-3021.
  7. Day R. M., “Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro”, Tissue Engineering, Vol. 11, (2005), 768-777.
  8. Xynos I. D., Edgar A. J., Buttery L. D. K., Hench L. L., Polak J. M., “Gene-expression profiling of human osteoblasts following treatment with the ionic Products of Bioglass 45S5 dissolution”, Journal of biomedical materials research, Vol. 55, (2001), 151-157.
  9. Xynos I. D., Edgar A. J., Buttery L. D., Hench L. L., Polak, J. M., “Ionic dissolution products of bioactive glass increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis”, Biochemical and Biophysical Research Communications,276: 2000, 461-465.
  10. Kokubo T., Takadama H., “How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials, Vol. 27, (2006), 2907-2915.
  11. Ahmed I., Lewis M., Olsen I., Knowles J. C., “Phosphate glasses for tissue engineering, Part 1. Processing and characterization of a ternary-based P2O5-CaO-Na2O glass system”, Biomaterials, Vol. 25, (2004), 491-499.
  12. Navarro M., Ginebra M. P., Planell J. A., “Cellular response to calcium phosphate glasses with controlled solubility”, Journal of biomedical materials research A, Vol. 67, (2003), 1009-1015.
  13. Bitar M., Salih V., Mudera V., Knowles J. C., Lewis M. P., “Soluble phosphate glasses: In vitro studies using human cells of hard and soft tissue origin”, Biomaterials, Vol. 25, No. 12, (2004), 2283-2292.
  14. Franks K., Abrahams I., Knowles J. C., “Development of soluble glasses for biomedical use. I. In vitro solubility measurement”, Journal of Materials Science: Materials in Medicine, Vol. 11, (2000), 609-614.
  15. Navarro M., Del Valle S., Ginebra M. P., Martınez S., Planell J. A., “Development of new calcium phosphate glass ceramic porous scaffold for guided bone regeneration”, Key Engineering Materials, (2004), 254-256, 945-948.
  16. Simon V., Muresan D., Simon S., “Iron effect on glass stability of sodium-calcium-phosphate glasses”, European Physical Journal-Applied Physics, Vol. 37, (2007), 219-222.
  17. Banijamali S., Eftekhari Yekta B., Aghaei A. R., “Self-patterning of porosities in the CaO-Al2O3-TiO2-P2O5 glass-ceramics via ion exchange and acid leaching process”, Journal of Non-Crystalline Solids, Vol. 380, (2013), 114-122.
  18. Abou Neel E. A., O’Dell L. A., Smith M. E., Knowles J. C., “Processing, characterization, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications”, Journal of Materials Science: Materials in Medicine, Vol. 19, (2008), 1669-1679.
  19. Navarro M., Ginebra M. P., Clement J., Martınez S., Avila G., Planell J. A., “Physicochemical degradation of titania-stabilized soluble phosphate glasses for Medical applications”, Journal of American Ceramic Society, Vol. 86, (2003), 1345-1352.
  20. Clement J., Manero J. M., Planell J. A., Avila G., Martınez S., “Analysis of structural changes of a phosphate glass during its dissolution in simulated body fluid”, Journal of Materials Science: Materials in Medicine,Vol. 10, (1999), 729-732.
  21. Sharifianjazi F., Parvin N., Tahriri M., “Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses”, Journal of Non-Crystalline Solids, (2017), 108-113.
  22. Pickup D. M., Valappil S. P., Moss R. M., Twyman H. L., ‘Guerry P., Smith M. E., Wilson M., Knowles J. C., Newport R. J., "Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass”, Journal of Materials Science, Vol. 44, No. 7, (2009), 1858-1867.
  23. Ungureanu D. N., Angelescu N., Bacinschi Z., Valentina Stoian E., Rizescu C. Z., “Thermal stability of chemically precipitated hydroxyapatite nanopowders”, International Journal of Biology and Biomedical Engineering, Vol. 5, No. 2, (2011), 57-64.
  24. Foroutan F., De Leeuw N. H., Martin R. A., Palmer G., Owens G. J., Kim H. W., Knowles J. C., "Novel sol-gel preparation of (P2O5)0.4-(CaO)0.25-(Na2O)X-(TiO2)(0.35-X) bioresorbable glasses (X = 0.05, 0.1, and 0.15)", Journal of Sol-Gel Science and Technology, Vol. 73 (2), (2015), 434-442.
  25. Brauer D. S., Rüssel C., Li W., Habelitz S., "Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation", Journal of Biomedical Materials Research: Part A., Vol. 77A (2), (2006), 213-219.
  26. Kim D. S., Shin J. Y., Ryu B. K., “Proton Conduction in and Structure of P2O5-TiO2-CaO-Na2O Sol-Gel Glasses”, Journal of the Korean Physical Society, Vol. 70, No. 12, (2017), 1054-1059.
  27. Arsad Maisara S. M., Pat M. L., “Synthesis and Characterization of hydroxyapatite Nanoparticles and β-TCP Particles”, 2nd International Conference on Biotechnology and Food Science, Vol. 7, (2011), 184-188.
  28. Davim E. J. C., Fernandes M. H. V., Senos A. M. R., “Increased surface area during sintering of calcium phosphate glass and sodium chloride mixtures”, Journal of the European Ceramic Society, Vol. 35, (2015), 329-336.
  29. Solgi S., Shahrezaee M., Zamanian A., Jafarzadeh Kashi T. S., Raz M., Khoshroo K., Tahriri M., “Sol-gel synthesis and characterization of SiO2-Cao-P2O5-SrO bioactive glass: in vitro study”, Key Engineering Materials, Vol. 631, (2015), 30-35.
  30. Pickup D. M., Guerry P., Moss R. M., Knowles J. C., Smith M. E., Newport R. J., “New sol-gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization”", Journal of Materials Chemistry, Vol. 17, (2007), 4777-4784.
  31. Foroutan F., Walters N. J., Owens G. J., Mordan N. J., Kim H. W., Leeuw N. H., Knowles J. C., “Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20−x)-(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15)”, Biomedical Material, Vol. 10, No. 045025, (2015), 1-11.
  32. Solgi S., Khakbiz M., Shahrezaee M., Zamanian A., Tahriri M., Keshtkari S., Raz M., Khoshroo K., Moghadas S., Rajabnejad A., “Synthesis, Characterization and In Vitro Biological Evaluation of Sol-gel Derived Sr-containing Nano Bioactive Glass”, Silicon, Vol. 9, No. 5, (2017), 535-542.
  33. Masel R. I., Principles of adsorption and reaction on solid surfaces. Wiley, New York, (1996).
  34. Lowell S., Shields J. E., Thomas M. A., Thommes M., "Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density", Kluwer Academic Publisher, Dordrecht, (2006), 12-15.
  35. Montazerian M., Eftekhari Yekta B., Marghussian V. K., Bellani C. F., Siqueira R. L., Zanotto E. D., “Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders”, Materials Science and Engineering C, Vol. 55, (2015), 436-447.