Effect of Current Density, Temperature, and Contact Paste on Flash Sintered 8YSZ

Document Type: Original Research Article


1 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran & Renewable Energy Department, Niroo Research Institute (NRI), Tehran, Iran

2 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran


Flash sintering has been investigated as a modern sintering method through examining the effect of processing parameters such as current density, temperature, and contact paste on the flash sintered 8YSZ characteristic. 95% of theoretical density was achieved at 800°С in 30sec with a field intensity of 100V.cm-1 and a current density of 160mA.mm-2. Such relative density in conventional sintering achieved at 1450°С for 4 hours. Results indicated that the temperature and flash current density have positive effects on the relative density. Contact paste had a significant effect on the relative density. 8YSZ samples with LSM contact paste had a higher relative density in comparison with those flash sintered with Pt contact paste. The positive effect of LSM contact paste was more significant, especially at lower current density.


Main Subjects

1- M.N. Rahaman, “Ceramic processing and sintering”, Marcel Dekker, New York, USA, 1996.

2- European Comission, Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, (2007) 210–211.

3- M. Tokita, “Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering”, Nanotechnologies in Russia, Vol. 10, (2015), 261–267,

4- V G Karayannis, “Microwave sintering of ceramic materials”, IOP Conf. Series: Materials Science and Engineering 161, 012068, 2016

5- E. Zapata-Solvas , D. Gómez-García, A. Domínguez-Rodríguez & R. I. Todd, “Ultra-fast and energy-efficient sintering of ceramics by electric current concentration”, Scientific Reports, Vol. 5, (2015), 8513.

6- M. Cologna, B. Rashkova, R. Raj, “Flash sintering of nanograin zirconia in <5 s at 850 °C”, J. Am. Ceram. Soc. Vol. 93, (2010), 3556–3559.

7- M. Cologna, A. L. G. Prette, R. Raj, “Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing”, J. Am. Ceram. Soc. Vol. 94, (2011), 316–319.

8- J. A. Downs, V. M. Sglavo,” Electric Field Assisted Sintering of Cubic Zirconia at 390°C”, J. Am. Ceram. Soc Vol.. 96, (2013), 1342–1344.

9- X. M. Hao, Y. J. Liu, Z. H. Wang, J. S. Qiao, K. N. Sun, “A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current”, J. Power Sources Vol. 210, (2012), 86–91.

10- A. Gaur, V. M. Sglavo, “Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C”, J. Mater. Sci. Vol. 49, (2014), 6321–6332.

11- T. Z. Jiang, Y. J. Liu, Z. H. Wang, W. Sun, J. S. Qiao, K. N. Sun, “An improved direct current sintering technique for proton conductor – BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process”, J. Power Sources Vol. 248, (2014), 70–76.

12- A. L. G. Prette, M. Cologna, V. Sglavo, R. Raj, “Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications”, J. Power Sources Vol. 196, (2011), 2061–2065.

13- A. Gaur, V. M. Sglavo, “Flash-sintering of MnCo2O4 and its relation to phase stability”, J. Eur. Ceram. Soc. Vol. 34, (2014), 2391–2400.

14- N. Shomrat, S. Baltianski, C.A. Randall, Y. Tsur, “Flash sintering of potassium-niobate”, J. Eur. Ceram. Soc. Vol. 35, (2015), 2209–2213.

15- L.A. Perez-Maqueda, E. Gil-Gonzalez, A. Perejon, J.-M. Lebrun, P. Sanchez-Jimeneza, R. Raj, “Flash Sintering of highly insulating nanostructured phase-pure BiFeO3”, J. Am. Ceram. Soc. Vol. 100, (2017), 3365–3369.

16- F. Trombin, R. Raj, “Developing processing maps for implementing flash sintering into manufacture of white ware ceramics”, Am. Ceram. Soc. Bull. Vol. 93, (2014), 32–35.

17- Y. Dong, “On the Hotspot Problem in Flash Sintering, Department of Materials Science and Engineering”, University of Pennsylvania, Philadelphia (USA), 2017. https://arxiv.org/abs/1702.05565.

18- E. Sortino, J.-M. Lebrun, A. Sansone, R. Raj, “Continuous flash sintering”, J. Am. Ceram. Soc. Vol. 101, (2018), 1432–1440.

19- T. Saunders, S. Grasso, M.J. Reece, “Ultrafast-Contactless Flash Sintering using Plasma Electrodes”, Sci. Rep. Vol. 6, (2016), 27222.

20- R. Chaim, “Liquid film capillary mechanism for densification of ceramic powders during flash sintering”, Materials Vol. 9, (2016), article no. 280

21- R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, “Electrical characteristics of flash sintering: thermal runaway of Joule heating”, J. Eur. Ceram. Soc. Vol. 35, (2015), 1865–1877.

22- M. C. Steil, D. Marinha, Y. Aman, J. R. C. Gomes, M. Kleitz, “From conventional ac flash-sintering of YSZ to hyper-flash and double flash”, Journal of the European Ceramic Society Vol. 33, (2013), 2093–2101.

23- R. Baraki, S. Schwarz, O. Guillon, “Effect of Electrical Field/Current on Sintering of Fully Stabilized Zirconia”, J. Am. Ceram. Soc., Vol. 95, (2012), 75–78.

24- P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.-A. Einarsrud, “Densification and properties of zirconia prepared by three different sintering techniques”, Ceramics International Vol. 33, (2007),1603–1610.

25- A. Borrell, M. D. Salvador, F. L. Penaranda-Foix, J. M. Catala-Civera, “Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties”, Int. J. Appl. Ceram Technol. Vol. 10, (2013) 313-320.