Effect of Current Density, Temperature, and Contact Paste on Flash Sintered 8YSZ

Document Type: Original Research Article

Authors

1 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran & Renewable Energy Department, Niroo Research Institute (NRI), Tehran, Iran

2 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran

Abstract

Flash sintering has been investigated as a modern sintering method through examining the effect of processing parameters such as current density, temperature, and contact paste on the flash sintered 8YSZ characteristic. 95% of theoretical density was achieved at 800°С in 30sec with a field intensity of 100V.cm-1 and a current density of 160mA.mm-2. Such relative density in conventional sintering achieved at 1450°С for 4 hours. Results indicated that the temperature and flash current density have positive effects on the relative density. Contact paste had a significant effect on the relative density. 8YSZ samples with LSM contact paste had a higher relative density in comparison with those flash sintered with Pt contact paste. The positive effect of LSM contact paste was more significant, especially at lower current density.

Keywords

Main Subjects


1- M.N. Rahaman, “Ceramic processing and sintering”, Marcel Dekker, New York, USA, 1996.

2- European Comission, Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, (2007) 210–211.

3- M. Tokita, “Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering”, Nanotechnologies in Russia, Vol. 10, (2015), 261–267,

4- V G Karayannis, “Microwave sintering of ceramic materials”, IOP Conf. Series: Materials Science and Engineering 161, 012068, 2016

5- E. Zapata-Solvas , D. Gómez-García, A. Domínguez-Rodríguez & R. I. Todd, “Ultra-fast and energy-efficient sintering of ceramics by electric current concentration”, Scientific Reports, Vol. 5, (2015), 8513.

6- M. Cologna, B. Rashkova, R. Raj, “Flash sintering of nanograin zirconia in <5 s at 850 °C”, J. Am. Ceram. Soc. Vol. 93, (2010), 3556–3559.

7- M. Cologna, A. L. G. Prette, R. Raj, “Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing”, J. Am. Ceram. Soc. Vol. 94, (2011), 316–319.

8- J. A. Downs, V. M. Sglavo,” Electric Field Assisted Sintering of Cubic Zirconia at 390°C”, J. Am. Ceram. Soc Vol.. 96, (2013), 1342–1344.

9- X. M. Hao, Y. J. Liu, Z. H. Wang, J. S. Qiao, K. N. Sun, “A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current”, J. Power Sources Vol. 210, (2012), 86–91.

10- A. Gaur, V. M. Sglavo, “Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C”, J. Mater. Sci. Vol. 49, (2014), 6321–6332.

11- T. Z. Jiang, Y. J. Liu, Z. H. Wang, W. Sun, J. S. Qiao, K. N. Sun, “An improved direct current sintering technique for proton conductor – BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process”, J. Power Sources Vol. 248, (2014), 70–76.

12- A. L. G. Prette, M. Cologna, V. Sglavo, R. Raj, “Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications”, J. Power Sources Vol. 196, (2011), 2061–2065.

13- A. Gaur, V. M. Sglavo, “Flash-sintering of MnCo2O4 and its relation to phase stability”, J. Eur. Ceram. Soc. Vol. 34, (2014), 2391–2400.

14- N. Shomrat, S. Baltianski, C.A. Randall, Y. Tsur, “Flash sintering of potassium-niobate”, J. Eur. Ceram. Soc. Vol. 35, (2015), 2209–2213.

15- L.A. Perez-Maqueda, E. Gil-Gonzalez, A. Perejon, J.-M. Lebrun, P. Sanchez-Jimeneza, R. Raj, “Flash Sintering of highly insulating nanostructured phase-pure BiFeO3”, J. Am. Ceram. Soc. Vol. 100, (2017), 3365–3369.

16- F. Trombin, R. Raj, “Developing processing maps for implementing flash sintering into manufacture of white ware ceramics”, Am. Ceram. Soc. Bull. Vol. 93, (2014), 32–35.

17- Y. Dong, “On the Hotspot Problem in Flash Sintering, Department of Materials Science and Engineering”, University of Pennsylvania, Philadelphia (USA), 2017. https://arxiv.org/abs/1702.05565.

18- E. Sortino, J.-M. Lebrun, A. Sansone, R. Raj, “Continuous flash sintering”, J. Am. Ceram. Soc. Vol. 101, (2018), 1432–1440.

19- T. Saunders, S. Grasso, M.J. Reece, “Ultrafast-Contactless Flash Sintering using Plasma Electrodes”, Sci. Rep. Vol. 6, (2016), 27222.

20- R. Chaim, “Liquid film capillary mechanism for densification of ceramic powders during flash sintering”, Materials Vol. 9, (2016), article no. 280

21- R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, “Electrical characteristics of flash sintering: thermal runaway of Joule heating”, J. Eur. Ceram. Soc. Vol. 35, (2015), 1865–1877.

22- M. C. Steil, D. Marinha, Y. Aman, J. R. C. Gomes, M. Kleitz, “From conventional ac flash-sintering of YSZ to hyper-flash and double flash”, Journal of the European Ceramic Society Vol. 33, (2013), 2093–2101.

23- R. Baraki, S. Schwarz, O. Guillon, “Effect of Electrical Field/Current on Sintering of Fully Stabilized Zirconia”, J. Am. Ceram. Soc., Vol. 95, (2012), 75–78.

24- P. Dahl, I. Kaus, Z. Zhao, M. Johnsson, M. Nygren, K. Wiik, T. Grande, M.-A. Einarsrud, “Densification and properties of zirconia prepared by three different sintering techniques”, Ceramics International Vol. 33, (2007),1603–1610.

25- A. Borrell, M. D. Salvador, F. L. Penaranda-Foix, J. M. Catala-Civera, “Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties”, Int. J. Appl. Ceram Technol. Vol. 10, (2013) 313-320.