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Magnetic hyperthermia (MH) is a promising cancer treatment approach that utilizes magnetic nanoparticles 
with unique properties such as higher penetration depth and precise thermal control that make them 

effective for cancer treatment. In addition, the sensitivity of cancer cells to heat and role of magnetic 
nanoparticles proved to be very effective in combined treatments. Here, CoFe2O4 nanoparticles are 

synthesized using a co-precipitation method under gas atmosphere during the synthesis process. The 

characteristics and properties of the synthesized nanoparticles are investigated using XRD, FESEM, and 
vibrating sample magnetometer (VSM) analyses. The XRD results confirm the formation of cobalt 

nanoparticles. The FESEM investigations reveal that nanoparticles have uniform surface morphology and 

spherical shape. The VSM results show that the CoFe2O4 nanoparticles possess superparamagnetic 
properties as confirmed by FORC analysis. Under the gas atmosphere, saturation magnetization (Ms) and 

coercivity (Hc) of the CoFe2O4 nanoparticles are obtained as 41.5 emu/g and 34.1 Oe, respectively, while 

these values in the nanoparticles synthesized without the gas atmosphere are calculated as Ms = 33.8 emu/g 
and Hc = 42.3 Oe. The MH of the CoFe2O4 nanoparticles is measured by preparing concentrations of 1, 3, 

and 5 mg/ml of the nanoparticles under the magnetic field of 400 Oe at the frequency of 400 kHz. The 

results show that the highest MH is achieved at the concentration of 3 mg/ml, and the specific loss power 
(SLP) value is measured as 190.3 W/g. Overall, these findings confirm that the co-precipitation method is 

an effective approach to the synthesis of biocompatible CoFe2O4 nanoparticles which is in line with the 

results from MTT analysis, having desirable properties for various applications, especially for MH. 
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1. INTRODUCTION 
 

Hyperthermia can be classified into several types based 

on its heat source. Magnetic hyperthermia (MH) is a 

promising cancer treatment approach that uses magnetic 

nanoparticles as the sources of heat generation in tumor 

tissues [1,2]. It offers several advantages over other 

treatment modalities that are listed in the following: 

higher penetration depth of alternating magnetic fields 

than other mechanisms (e.g., light or ultrasound) that 

allows access to deeper tissues, use of nanoparticles in a 

wide range of concentrations and their retention in the 
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tumor site for repeated treatment sessions, size-

dependent magnetic properties that facilitate control and 

tuning of the heating level, precise control of the 

nanoparticle size, morphology, and surface modification 

for different purposes including biocompatibility, ability 

to provide chemical groups for attaching biological 

molecules, and minimization of blood protein adsorption. 

Application of magnetic nanoparticles for hyperthermia 

cancer therapy is highly promising due to their excellent 

temperature homogeneity [3-7]. Additionally, they can 

be simultaneously used in combinatorial therapies. One 

of these approaches is targeted drug delivery combined 

with hyperthermia in which the drugs are attached to the 

surface of nanoparticles as the carriers and delivered to 

the target tissue [8,9]. A variety of cancer imaging 

techniques and nano-platforms have been recently used 

for cancer diagnosis in order to monitor treatment [10,11]. 

In recent years, different methods have been developed 

for cancer treatment. These methods are classified into 

two categories: a) traditional methods such as surgery, 

chemotherapy, and radiation therapy, and b) advanced 

methods such as gene therapy, hormone therapy, 

photodynamic therapy, and hyperthermia therapy (or 

thermal therapy) [12-14]. In medical science, 

hyperthermia therapy is referred to as a cancer treatment 

method in which cancerous tissues are exposed to a 

temperature increase above the physiological body 

temperature (37 °C) up to about 6-8 °C. One of the 

prominent features of the cancer cells, compared to the 

healthy ones, is their sensitivity and vulnerability to heat, 

and a temperature increase of more than 6 °C can 

completely destroy them [15-18]. The sensitivity of the 

cancer cells to heat results from lack of oxygen caused by 

poor blood flow in the tumor area. Healthy cells can 

organize blood flow and dissipate excess heat through the 

vascular network around them in the convection and 

diffusion phenomenon while the cancer cells have less 

ability to expand the vascular network. As a result, blood 

flow decreases and the tissue becomes overheated (more 

than 42 °C). In addition, the survival of the tumor cells 

significantly decreases in the range of 41-47 °C while the 

healthy cells are hardly affected by this temperature 

increase [15,16,19]. 

Due to their small size or high surface area, 

nanomaterials, especially those with sizes ranging from 1 

to 100 nanometers, are characterized by unique optical, 

electrical, catalytic, thermal, and magnetic properties 

[20-28]. Magnetic nanoparticles have been used in a wide 

range of applications because they can be easily 

separated under an external magnetic field and designed 

for various purposes such as the advanced material 

synthesis, magnetic enhancement imaging, and 

controlled heat imaging [29-31]. Generally, magnetic 

nanoparticles are composed of magnetic elements such as 

iron, cobalt, nickel, and their chemical compounds. 

Among various types of the magnetic nanoparticles, 

ferrite nanoparticles with superparamagnetic properties 

have been frequently referred to as the efficient magnetic 

nanomaterials that are suitable for various applications 

[6,31-33]. Ferrite nanoparticles have interesting 

properties such as non-toxicity, biocompatibility, 

chemical stability, and high magnetic reversibility  

[34-37]. Cobalt ferrite nanoparticles have a high potential 

for targeted drug delivery and MRI and for this reason, 

they have received considerable attention in recent 

decades. Owing to their attractive magnetic properties, 

cobalt ferrite nanoparticles have high potential in MH 

therapy [31,38-40]. 

Magnetic nanoparticles can be synthesized by physical 

and chemical methods among which, the co-precipitation 

method is one of the cost-effective and simple methods. 

As a disadvantage, some materials in the synthesis 

through this method do not have uniform quality. One of 

the ways to control uniformity and proper morphology in 

the synthesis based on co-precipitation method is to use 

argon and hydrogen atmosphere that removes excessive 

oxygen and impurities during the synthesis [41-44]. 

However, the significant role of the MH properties of 

cobalt ferrite nanoparticles synthesized by a co-

precipitation method under the gas atmosphere has been 

still neglected. 

In this study, the prepared sample was first converted 

into a stable nanoparticle suspension with a specific 

concentration. Then, the sample was placed in a MH 

measurement device where an alternating magnetic field 

with a specific intensity and frequency was applied, and 

the temperature increase of the nanoparticle suspension 

was measured and recorded for one minute. The value of 

specific loss power (SLP), which indicates the amount of 

the MH of the nanoparticles in the presence of the 

magnetic field, was calculated using Equation (1) In this 

equation, c represents the specific heat capacity of the 

solvent, m
MNPs

 the mass of the magnetic nanoparticles, m
f
 

the mass of the fluid, and ∆T/∆t the initial slope of the 

temperature-time curve [45]. 

 

f

MNPs

T
SLP c

t

m
m
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2. MATERIALS AND METHODS 
 
2.1. Synthesis of CoFe2O4 Nanoparticles 

For the synthesis of CoFe2O4, 10 ml of 0.5 M 

FeCl3.6H2O and 6 ml of 0.4 M CoCl2.6H2O were mixed 

in a three-necked flask and placed on a temperature-

controlled heater mantel. The mixture was then heated to 

85 °C under the gas atmosphere (85 % argon + 15 % 

hydrogen) [46,47]. During the heating process, the pH of 

the medium reached about 12 by adding NaOH solution 

drop by drop. The solution was stirred for 60 min at 85 °C 

and then, the obtained precipitate was cooled down to room 
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temperature. Finally, the precipitate was washed five times 

with ethanol and deionized water using a centrifuge. The 

schematic of the synthesis steps is shown in Figure 1. 

 

 

Figure 1. Schematic representation of the preparation process 

of CoFe2O4 nanoparticles using a co-precipitation method 

under gas atmosphere 

 

2.2. Characterizations 
A Field-Emission Scanning Electron Microscope 

(FESEM, TESCAN, Czech) was used to investigate the 

morphology of CoFe2O4 synthesized with different 

surfactants. Then, X-Ray Diffraction (XRD; Philips, 

X’Pert Pro, λ = 0.154 nm) analysis was done to study the 

crystal structure of the CoFe2O4. The magnetic properties 

were then investigated at room temperature by measuring 

the hysteresis curves (applied magnetic field: ±10000 

Oe) and doing FORC analysis using a vibrating sample 

magnetometer (VSM, MDK Co.) equipped with FORC 

software. 

MH value of the CoFe2O4 was evaluated by measuring 

their heating efficiency using an alternating magnetic 

field with the intensity of 400 Oe at the frequency of  

400 kHz. For this purpose, a hyperthermia device 

(Magnetic DaneshPajoh Kashan Co.) was used. The SLP 

value of the prepared ferrofluids (containing CoFe2O4 

nanoparticles with concentrations of 1, 3, and 5 mg/ml in 

deionized water) was calculated through Equation (1). 

 

 

3. RESULTS AND DISCUSSION 
 
3.1. XRD Results 

The XRD pattern of the synthesized CoFe2O4 is shown 

in Figure 2. In general, the XRD peaks at 2θ = 18.2°, 

29.9°, 35.4°, 36.8°, 42.9°, 53.2°, 56.6°, 62.4°, and 73.6°, 

respectively, can be indexed to (111), (220), (311), (222), 

(400), (442), (511), (440), and (533) reflections of face-

centered cubic CoFe2O4 crystal structure (JCPDS card 

no. 00-002-1045). The absence of other peaks is 

indicative of the high purity of the synthesized sample. 

The average crystallite size (dcs) was estimated along the 

preferential orientation using Scherrer equation [48]: 

cosCS

K
d



 


 
(2) 

 

where K is the shape factor (K = 0.9), λ the X-ray 

wavelength, β (in terms of radian) the full width at half 

maximum, and θ the diffraction angle. Accordingly, the 

value of dcs of CoFe2O4 was obtained as d 21.6 nm [49-54]. 

 

 

Figure 2. XRD pattern of CoFe2O4 

 
3.2. FESEM Results 

Figure 3 demonstrates the FESEM image of the 

CoFe2O4 nanoparticles. The synthesized cobalt ferrite 

nanoparticles have spherical morphology and suitable 

uniformity, one of the effective factors on the magnetic 

heat enhancement of magnetic nanoparticles. As 

observed in the inset of Figure 3, the size distribution of 

the CoFe2O4 nanoparticles was obtained using FESEM 

images and Digimizer software. The size of the CoFe2O4 

nanoparticles is in the range of 10 to 38 nm with the 

average size of 24 nm, indicating the formation of 

superparamagnetic nanoparticles. 

 
3.3. Hysteresis Curve and FORC Results 

The room temperature hysteresis curve of the 

synthesized CoFe2O4 nanoparticles is illustrated in 

Figure 4. To study the magnetic properties of cobalt 

ferrite nanoparticles synthesized under gas atmosphere 

(S1) and without gas atmosphere (S2), a magnetic field 

in the range of -10 kOe to +10 kOe was applied to the 

samples in order to obtain the magnetic parameters. The 

saturation magnetization (MS) and coercivity (HC) values 

of the samples S1 and S2 are found to be 41.5 emu/g and 

34.1 Oe and 33.8 emu/g and 42.3 Oe, respectively. It is 

inferred that the gas atmosphere probably prevents the 

formation of oxide impurities in the cobalt ferrite 

nanoparticles, thus enhancing MS value up to about 22 % 

(from 33.8 to 41.5 emu/g). These nanoparticles are 

considered as superparamagnetic materials due to their 
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low coercivity. In addition to generating magnetic heat, 

this property of nanoparticles can also be used to increase 

the image contrast in the MRI since these nanoparticles 

do not have any harmful effects on the human body. 

Figure 4 shows the hysteresis curve of CoFe2O4 

nanoparticles, which shows the superparamagnetic 

nature of cobalt ferrite nanoparticles due to its very 

narrow width (close to zero). 

 

 

 

Figure 3. FESEM image of CoFe2O4. The inset represents the 

corresponding size distribution 

 

 

Figure 4. Hysteresis curves of the CoFe2O4 nanoparticles 

synthesized under gas atmosphere (S1) and without gas 

atmosphere (S2). The inset shows the details of the curves. 

 

The FORC analysis was carried out by initially 

intensifying the magnetic field (H) applied to the sample 

up to its saturation field, followed by decreasing it by a 

reverse field (Hr). During this process, magnetization M 

(H, Hr) was measured. Accordingly, sets of FORCs were 

plotted. The magnetic field ranged from –750 to +750 

Oe, having a reversal step of 30 Oe. The FORC diagram 

depicted in Figure 5 shows a coercive field distribution 

ranging between 0 and 110 Oe. This may also indicate 

the relatively high contribution of the superparamagnetic 

CoFe2O4 nanoparticles due to their small average 

diameter. In the FORC diagram, the extent of the 

coercive field and magnetostatic interactions can be 

extracted, showing the uniformity and distribution of the 

nanoparticle size. The mild coercive field distribution 

around the origin of the graph (Hc
FORC < 110 Oe) is 

attributed to the quasi-superparamagnetic behavior of the 

nanoparticles [55]. 
 

 

Figure 5. FORC diagram of CoFe2O4 nanoparticles 

 
3.4. MH Measurements and MTT Results 

In the measurements of the MH which ultimately leads 

to the calculation of SLP, ferrofluids containing cobalt 

ferrite nanoparticles with the concentrations of 1, 3, and 

5 mg/ml were prepared in aqueous medium. An 

ultrasonic bath was then used to disperse nanoparticles in 

water, and the solutions were placed in the bath for 30 

min. The hyperthermia properties of the nanoparticles 

were measured using a MH machine (MDK, Iran). The 

ferrofluids of the samples were subjected to an 

alternating magnetic field with the frequency of 400 kHz 

and field intensity of 400 Oe in the device. Figure 6a 

shows the ∆T with respect to the time of nanoparticles in 

a period of 5 min. The SLP values were calculated using 

Equation 1 by considering the temperature increase value 

measured in a one-minute period. 

Figure 6b shows the amounts of the SLP of the 

CoFe2O4 nanoparticles with the concentrations of 1, 3, 

and 5 mg/ml, and the highest amount equals 190.3 W/g 

at the concentration of 3 mg/ml. A comparison of the heat 
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dissipation power of the samples with different 

concentrations shows that the decrease in concentration 

(from 5 to 3 mg/ml) causes an increase in the heat 

produced by the ferrofluid. 

 

 

Figure 6. (a) Variation of ∆T with respect to time for ferrofluids 

of CoFe2O4 nanoparticles and (b) different concentrations of 

ferrofluids (1, 3, and 5 mg/ml) 

 

As the concentration decreases, the amount of 

nanoparticles dissolved in the solution decreases. 

Meanwhile, the solution becomes less viscous, and the 

distance between the nanoparticles increases. This, in 

turn, lessens the interaction between the nanoparticles, 

thus making them have less obstacles against their 

physical rotation in the fluid. As a result, they can convert 

more amount of the absorbed electromagnetic energy 

into heat due to their higher and faster rotation 

movements that eventually increases the SLP. It should 

be noted that changing the concentration can affect the 

Brownian relaxation mechanism, which is related to the 

rotation of nanoparticles. In fact, the Néel mechanism is 

related to the rotation of the moments inside the 

nanoparticles, hence independent of the surrounding 

environment of the nanoparticles. Finally, at the 

concentration of 3 mg/ml, the effect of Néel and 

Brownian mechanisms reaches its optimal state, and the 

effect of these two mechanisms leads to the highest SLP 

at this concentration. Other effective factors that 

determine the SLP value are the characteristics of the 

measuring device such as the frequency and intensity of 

the field [56,57]. 

Figure 7 illustrates the MTT assay results obtained 

from the CoFe2O4 nanoparticles after 24, 48, and 72 h. 

According to findings, the cell viability of the L929 cells 

remains high (> 85 %) in the presence of these 

nanoparticles. Overall, it can be concluded that CoFe2O4 

nanoparticles with high SLPs do not have a significant 

cytotoxic effect on the L929 cells, hence suitable for MH 

therapy. 

 

 

Figure 7. MTT assay results of CoFe2O4 nanoparticles for 

different times 

 
 
 

4. CONCLUSION 
 
In conclusion, CoFe2O4 nanoparticles were synthesized 

in this study based on a co-precipitation method under 

gas atmosphere (85 % argon + 15 % hydrogen). The 

formation of cobalt nanoparticles was confirmed based 

on the XRD results. The FESEM investigations showed 

that the surface morphology of the CoFe2O4 

nanoparticles was uniform. In addition, according to the 

FESEM images, the nanoparticles under study had 

spherical morphology. The results of the hysteresis curve 

showed that CoFe2O4 nanoparticles were 

superparamagnetic in nature. The gas atmosphere played 

a constructive role in enhancing the magnetic properties 

by increasing the Ms value up to about 22 %. Further, the 

FORC analysis confirmed the superparamagnetic 

contribution of the nanoparticles. Investigations of the 

https://doi.org/%2010.30501/acp.2023.402618.1126


50 K. Heydaryan et al. / Advanced Ceramics Progress: Vol. 9, No. 2, (Spring 2023) 45-52  

magnetic heat enhancement at the concentrations of 1, 3, 

and 5 mg/ml in aqueous medium confirmed that the 

suitable concentration for the highest SLP was 3 mg/ml 

for biocompatible cobalt ferrite nanoparticles. The 

synthesized nanoparticles have a high potential for 

drug delivery and MRI in future works. 
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