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The periodic structure of 1-3 piezocomposite phononic crystal minimize the influence of coupling of the 

parasitic modes on the deliberately excited plane modes and prevent the propagation of unwanted Lamb 

waves. In this article, the band structures of centered square phononic crystals of PZT-5H rods in 

polyethylene terephthalate matrix have been studied using the numerical method of finite elements. In 
particular the phoninic band gaps of the system have been investigated as functions of the volume of the 

PZT element at the center of the unit cell of the considered crystal, under the condition of constant filling 

fraction of PZT rods. The results indicate that the band structure of the system contain three gap whose 
width vary by the volume. These gaps have extended in the (normalized) frequency range 1100 m/s to 2530 

m/s Particularly it is shown that when the all PZT rods of the system are of the same size, the maximum 

achievable band gap of the system attains. 
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1. INTRODUCTION 

 
Today, piezocomposite materials are used in many 

engineering applications and smart structures. The idea 

of piezocomposite materials was presented in 1978 by 

Newnham et al. which has received much attention and 

achieved significant achievement [1]. In piezocomposite 

structure, a piezoelectric material with high piezoelectric 

properties such as PZT and PMN-PT generally acts as 

active phase and a polymer material such as epoxy resin, 

polyethylene, etc. acts as an inactive phase [2] [3]. Using 

the connection concept proposed by Newnham, these 

materials are classified into 10 types of piezocomposites 

[4]. One of the most famous and widely used of these 

materials is 1-3 piezocomposite.  

Superior properties of piezocomposites such as low 

acoustic impedances, (from 5 MRayl to 27 MRayl), high 

coupling coefficients (usually 0.61 to 0.75), high 

bandwidth and lower Qm have made these materials 

widely used in high frequency ultrasound transducers, 

medical imaging and sonar systems [5] [6]. Periodic 

structure of piezocomposites causes the formation of 

certain stop bands or band gaps in the frequency 

spectrum of these structures. The existence of these band 

gaps has caused the propagation of elastic waves in 

heterogeneous media to attract the attention of many 

scientists in the past years [7]. In fact, the large band gaps 

in piezocomposites are suitable for many applications, 

such as elastic and acoustic filters, transducer structres, 

control of noise, and vibration shields [8]. For instance, 
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by setting the frequency of the thickness mode of 

piezocomposites in band gaps, it is possible to minimize 

the coupling with parasitic modes such as lateral modes 

and prevent the propagation of Lamb waves. Therefore, 

considerable research has been devoted to increasing the 

band gap widths [9] [10] which strongly depends on the 

physical properties, size and shape of constituent phases 

[11]. 

Hou et al. [12] investigated the elastic band gap 

structure of a two-dimensional acoustic crystal 

containing piezoelectric materials and analyzed the 

piezoelectric effects on the band gaps. Qian et al. [13] 

studied the dispersion relations of horizontal shear wave 

propagation in a periodic layered piezoelectric structure 

for cases of wave propagation in normal and tangential 

directions to the interface. Silva et al [14] investigated the 

maximization of absolute elastic wave gap width in 

designed piezocomposite materials using topology 

optimization. Zheng Hua et al. [15] compared the band 

gaps in two-dimensional piezocomposite with 1-3 

connection family of piezoceramic rods with circular and 

square cross-sections. Sigmund [9] [16] applied the 

method of topology optimization to design periodic 

materials and structures with acoustic band gaps to 

minimize the structural response along the boundaries or 

maximize the response at certain boundary points. 

Halkjer et al. [17] maximized the acoustic band gap for 

infinite periodic beam structures modeled by 

Timoshenko beam theory, for alternating, thick and 

medium thickness plates and for finite thick plates. 

Jensen et al [18] maximized the bandgap size for shear 

waves in the Mindlein plane. Evgrafov et al. [19] applied 

topology optimization to the design of 2D and 3D 

phononic (elastic) materials, focusing on surface wave 

filters and waveguides. Other issues related to the 

propagation of sound waves in two-dimensional and 

three-dimensional piezoelectric periodic structures have 

been mentioned in various researches [20] [21] [22] [23]. 

Most of the researches that preformed in the past, were 

mainly based on three main axes. First, changing the 

piezoceramic filling fraction, which causes changes in 

piezocomposite parameters such as coupling coefficient, 

characteristic impedance, effective density, and 

longitudinal velocity. Second, the change in the 

geometric shape of piezoceramics and the use of different 

geometric shapes, the problem of this method is that you 

cannot have a good control over the adjustment of these 

band gaps. Third, the change in the ingredients of the 

piezocomposite, which, like the second case, causes a 

sudden change in the band gap parameters, and it is not 

possible to have good control over the adjustment of the 

band gaps. 

In this research, we suggest a 1-3 piezocomposite of 

centered cubic crystal structure and investigate the effect 

of volume fraction of different phases of piezoelectric 

rods on the band gaps at constant ceramic filling fraction. 

In this analysis, Bloch-Flocke theory [24] and finite 

element analysis were used to investigate the dynamic 

behavior of two-dimensional piezocomposite unit cells 

for calculation of the band gap. In this research, we have 

presented a structure that can be used to control the width 

of band gaps without changing the filling fraction and 

only by changing the ηs. It is shown that in the case of 

η=50%, we can reach the maximum gap bandwidth. 

 

2. Problem explanation and finite element 
modeling 
 

The system considered in this study is a 1-3 

piezocomposite structure composed of a square lattice of 

lattice constant a and a unit cell containing a couple of 

rods of PZT-5H with circular cross-section and different 

radii, represented by white and gray color in Figure 1. 

The PZT rods are considered to embed in a polymer 

matrix of polyethylene terephthalate. 

Due to the periodicity of the considered crystal and its 

infinite size along x and y axis, the mechanical 

displacements ui and electric potential φ obey the Bloch 

relation (Equation (1-2)) [15]: 

ui(x+ma1,y+pa2) = ui(x,y,z) exp(- jkxma1) 
exp(- jkypa2) 

(1) 

φ(x+ma1,y+pa2) = φ(x,y,z) exp(- jkxma1) 
exp(- jkypa2) (2) 

where the components of the Bloch wave vectors in the 

x and y directions are shown by kx and ky, respectively 

and m and p are integer. 

 The above mentioned periodical boundary conditions 

make it possible to limit the calculations just to a single 

unit cell. The square unit cell of the system is considered 

as depicted in Figure 1-b. The cell contains two different 

rode one represented by four quarter circles of radius RA 

at the corners and a full circle of radius RB in the center 

which hereafter are called rod A and rod B respectively. 

The polarization axis of the piezoelectric rods is 

considered perpendicular to the plane of the unit cell. 

 

 

Figure 1. According to the schematic, (a) the proposed 1-3 

piezocomposite network model, (b) the unite cell of the 

network, (c) show the first Brillouin zone. Gray circles are 

rode A and white circles are rode B.  we change the size of the 



  B.Amanat / Advanced Ceramics Progress: Vol. ?, No. ?, (Season 202?) ??-??  

 

gray circles and the white circles in such a way that the filling 

fraction of the piezocomposite remains constant. 

 

 

For the above considered piezocomposite, the filling 

fraction of the piezoceramics phase, which defined as the 

ratio of the volume of the piezocomposite rods in the unit 

cell to the total volume of the unit cell, is equal to 

Equation(3). 

(π(RA
2 + RB

2 )/a2) (3) 

 

In addition, we define here the volume fraction of the 

rod B as the ratio of the volume of rod B to the summation 

of the volume of the rods A and B in a unit cell and 

represent it by η (Equation(4)) . Based on the radius of 

the rods one has 

η =
RB

2

RA
2 + RB

2  (4) 

The aim of this paper is to investigate the band 

structures of the above mentioned phononic crystal as a 

function of  η in order to find the optimum value of η  for 

which the band gap attains their maximum. To this end 

and for the sake of simplicity, the filling fraction is 

considered constant equal to 50% everywhere in this 

research. In the other word as the Rb increases by 

increasing η , Ra must be decreases in such a way that the 

filling fraction remains constant.   

Due to the complex topology of this structure, a 

numerical method, such as the Finite Element Method 

(FEM), is necessary for analyzing the vibrational 

properties of the structure. The finite element numerical 

method has been well developed for linear piezoelectric 

materials and have been widely used in analyzing 

piezocomposites. Thus, in this study the FEM would be 

used in studying band structures of the considered 

composite. To this end the unit cell is divided into a mesh 

of triangular elements connected by nodes as represented 

schematically in Figure 2. 

In the absent of external forces and by considering 

monochromatic time dependent exp(jωt) the general 

piezoelectric problem is written as Equation (5) [14]. 

[
Kuu − ω2Muu Kφu

Kφu Kuu
] (

u
φ) = (

0
0

) (5) 

where Kuu and Muu are the stiffness and mass matrixes 

of the fully elastic part of the problem, respectively. Kφφ 

represents the pure dielectric part and Kuφ is the 

piezoelectric coupling matrix. As mentioned, the 

translational symmetry of the lattice allow to reduce the 

problem the first Brillouin zone, Figure 1 (b). To obtain 

the dispersion diagrams, the wave vector varies inside the 

first Brillouin zone for a given propagation direction 

which as usual can be reduced using the symmetry 

properties of the system to the first irreducible Brillouin 

zone. For a square lattice of constant a, the first Brillouin 

zone is defined by -π/a<kx<π/a and -π/a<ky<π/a and the 

band structures are calculated along the M-Γ-X-M path 

(see Figure 1(c)). To confirm the accuracy of the results 

the mesh sizes have been refined repeatedly until the 

angular frequency convergence has been obtained. 

TABLE 1. Characteristics of the materials used in the 

calculations [25] [15] 

  PZT-5H  
polyethylene 

terephthalate 

E
la

st
ic

 c
o

n
st

an
ts

 

(1
0

9
N

m
-2

) 

C11 121 

Y
o

u
n
g

's
 m

o
d
u

lu
s 

7×109 

C33 117 

C44 23 

C13 84.1 

C12 79.5 

P
ie

zo
el

ec
tr

ic
 

co
n

st
an

ts
 (

C
m

-2
) e15 17 

P
o

is
so

n
's

 r
at

io
 

0.44 e31 -6.5 

e33 23.3 

D
ie

le
ct

ri
c 

co
n

st
an

ts
 

(1
0

-1
0
 F

 m
-1

) ε13 150 

M
as

s 
D

en
si

ty
 (

k
g

/ 
m

-3
) 

1430 

ε33 130 

M
as

s 
D

en
si

ty
 

(k
g

/ 
m

-3
) 

ρ 4500 

 

 

https://doi.org/10.30501/acp.2018.90833


 

 

 

Figure 2. A view of a meshed unit cell. 

 

 

2. Numerical simulation and discussion 
 

In this section, the results of the variation of the volume 

fraction η on the band structure of the piezoelectric 

phononic crystal, introduced in the last sections, are 

presented and discussed. By considering the total filling 

fraction of the PZT-5H rods as constant equal to 50%, 

and altering the η from 0 to 50% the band structures are 

obtained by calculating the lowest 20 bands of the system 

utilizing the finite element analysis. The material 

parameters used in the calculations are tabulated in 

Tables 1. The results are as follow. It should be noted that 

since the rods in a unit cell are consist of a same type of 

piezoceramic material, i.e. PZT-5H, it is expected that 

band structure for η values greater than 50% would be 

similar to their counterparts of  η<50%. In the other word, 

for example the band structure of  η=70% match that of  

η=30% because the only difference between the unit cell 

in this case is that the volume of rods A and rods B are 

replaced. The bands are calculated along the path M-Γ-

X-M about the irreducible Brillouin zone of the square 

lattice and plotted in term of the product of frequency and 

lattice constant f × a  versus the wave vector K along the 

first irreducible Brillouin zone, see Figure 1-c. It is 

inferred that the existing band gaps extend across the 

Brillouin zone as stated by Vasseur et al. [24]. 

Figure 3 illustrate the band structures of the considered 

1-3 piezocomposite in the limiting case η=0, which is 

corresponding to a simple square lattice. As can be seen 

in Figure 3, there exist just one complete band gap 

between third and fourth band. The gap extended in the 

frequency range 1100<f.a<1500 with relative bandwidth 

31%. 

By increasing   from zero the volume of rod B starts to 

grow from zero which in addition with the constant 

filling fraction 50% causes the volume of rod A to 

decrease.  

In Figure  4 (a) the band structure for η=5% have been 

represented. It is shown in this case that the magnitude of 

band gap between third and fourth bands decrease to 

209m/s. This band starts from 1105 m/s to 1314 m/s with 

relative bandwidth 17%. Although this gap is squeezed 

by increasing η from zero, another band gap starts to 

appear between tenth and eleventh bands. This gap lies in 

the frequency range 2296 m/s to 2527 m/s with relative 

band gap 9.8%. The presence of the later gap could be 

attribute to the emergence of rods B in the middle of the 

unit cell instead of decrease in the volumes of rod A. To 

check this, we evaluate the band structures for very small 

values of  η, not shown here, and observe that the later 

gap starts to grow immediately as η increases from zero. 

Since for these small values of η the volume of rod A 

does not change considerably, it is reasonable to attribute 

this band gap to the new scattering center produced in 

each unit cell. (The number in the right of each Figure  is 

the bandwidth of band gap)  

By increasing η to 10% a third gap start to emerge as 

presented in Figure 4 (b). As indicated in this figure this 

gap lies between 6th and 7th bands with lower edge 

1737m/s and relative bandwidth 0.4%. Although in this 

case the lower limit of first band gap remains unchanged 

with respect to   =5% case, its band width decreases to 

95m/s as a result of descending the 4th band. Contrarily 

the second band gap now grow to 262m/s with relative 

bandwidth 10.9% due to descending 10th band and rising 

11th band.  

By further increase of η to 20%, the first band gap is 

closed completely as a consequence of the downward 

movement of the fourth (in addition with the fifth and 

sixth) bands although the first, second and third bands 

remains almost unchanged. As presented in Figure  4c, 

here the bandwidth of 2nd band gap shrinks 

symmetrically to 131 m/s so that its lower edge increases 

to 2362 m/s. On the other hand, although both the 

maximum of 6th band (1597m/s) and the minimum of 7th 

band (1791m/s) have been decreased, the width of third 

band width increases to 194m/s. 

 

 

Figure 3. Dispersion diagram and elastic band structure for 

XY vibration modes in a typical 1-3 piezocomposite in 50% 

piezoceramic filling fraction, which does not have rode A 

circles (η=0).. 
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TABLE 2. Specifications of materials used and different 

values of η 
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Figure 4. Dispersion diagram and elastic band structure for 

XY vibration modes in a typical 1-3 piezocomposite in 50% 

piezoceramic filling fraction. 

 

The width of the third band gap grows continuously as 

η increases to 50% that reaches its maximum, see 

Figures. 4-b, c, d, e, f. At η=50% the third gap extended 

in the frequency range 2122<f.a<1558 with band width 

equal 564m/s and relative bandwidth 31%. This can be 

easily found that since the 5th and 6th bands remain almost 

unchanged, the widening of this gap occurs as a direct 

result of the shift of 7th band to the higher frequencies. In 

addition, there exist a narrower band gap just above 7th 

band from  η=10% to  η=40%, Figure  4-b, c, d, which is 

faded as η increases to 40%. The maximum relative 

bandwidth of this gap is 4.3% whose minimum at 

2234m/s occurs at M point of Brillouin zone for η=35% 

(show in Figure 6). An interesting feature of the case  

η=50% is the dual degeneracy of each band in the X-M 

range. In the other word the six bands which exist in the 

ranges M-Γ and Γ-X converge so that just three band are 

observed in X-M range. This happens due to the fact that, 

for  η=50% the centered square lattice under 

consideration transforms into a simple square lattice of 

lattice constant   𝑎/√2 whose axis rotates π/4 with 

respect to the axis of the centered square lattice 

considered so far. The Brillouin zone of this lattice is 

depicted in Figure 5 along with that of the original 

centered square. The calculation of band structure for the 

simple square lattice mentioned above along with the 

(unconventional) directions of Figure 5 shows complete 

match with the case  η=50%. 

  

 

Figure 5. According to the schematic, (a) the unit cell of 

simple square lattice associated with   = 50% (solid line), (b) 

The B.Z. corresponding to the simple square in addition with 

the B.Z. of a centered square lattice constant a of fig.1 (The 

dotted lines show the Brillouin zone in Figure 1.) 

 
TABLE 2. Specifications of each band gap for different η 
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Figure 6. The width of the first five bands in terms of different 

values of η at the filling fraction F=50% 

 

 

Figure 7. The open points, close points and width of the band 

gaps at the filling fraction F=50% versus η 

 

 

Figure 8. The density of states at the filling fraction F=50% 

versus η=50% 

 

As a summary the information of the gaps of the above 

considered phononic crystals have been accumulated and 

plotted as functions of η in Figure  6. As can be seen in 

this figure the maximum width, equal to 400m/s, of the 

first band gap occurs at η=0 and the gap dissolved above  

η=20%. In the middle range the second band gap is 

dominated above η =5% up to  η≈18% with a maximum 

of 262m/s at  η=10%. The third and the long lasting gap 

start at  η=10% and exist until  η=50% with a maximum 

equal to 564 m/s at  η=50%. The width of later gap grows 

continuously by η so that it is the dominated gap above  

η≈18%. There is also a minor gap which appear above  

η=10% whose maximum does not excess 98m/s. Finally 

it should be noted that, however the first and second band 

gaps have nearly equal maximums, the largest band gap 

which could be obtain by modifying the volume ratio of 

rodes A with respect to rode B is belong to third gap at  

η=50%. 

This property is featured in more details in Figure  7 in 

which the upper and lower boundary corresponding to 

each gap is depicted as function of η. As shown in this 

figure, the first and second band gaps lies in the 

frequency range 1500 m/s-1100 m/s and 2268 m/s-2530 

m/s respectively, while in between the third gap lies in 

range 1558 m/s-2122 m/s. It is notable that no gap is 

exists below the lower frequency limit of first gap and 

above the higher frequency limit second band gap (it is 

tested but not presented here by considering 50 bands in 

our calculations).  

We calculated the density of states in the entire 

Brillouin zone, which is shown as an example of the 

results obtained for filling fraction=50% and eta = 50% 

in Figure 8. According to the obtained results, we 

observed that this gap is spread throughout the Brillouin 

zone. The presence and magnitude of this gap in the 

elastic band structure and density of state clearly show 

that this band gap extends throughout the Brillouin zone. 

In this Figure 7, it is easy to see the bandwidth, lower 

and upper limits, and the opening and closing points of 

each band gap in different η values. In the first and third 

band gaps, the lower limit of the band gap is almost 

constant and their changes are mainly caused by changes 

in their upper limit. According to Figure 4, it can be seen 

that the first, second and third bands are stable and 

unchanged, and with the movement of the fourth, fifth 

and sixth modes, the first band gap is closed. After 

closing the first band gap, these modes remain almost 

constant and unchanged and play a role as the lower limit 

of the third band gap. With the stability of these modes, 

the main changes in the bandwidth of the third band gap 

are caused by the upward movement of the higher bands. 

In other words, when the bandwidth of the third band gap 

increases, the first to sixth modes are constant and 

unchanged, and the main change of this band gap is 

caused by the upward movement of the seventh, eighth, 

ninth and tenth bands. In general, it can be concluded that 

the addition of the rode A causes the creation of new 

boundary conditions and the excitation of lateral modes, 

which this new boundary condition leads to changes in 

the band gaps. 

As can be seen in Figure 4, by changing the η while 

maintaining the filling fraction of the piezoceramic rods, 

the dispersion diagram of the piezocomposite changes 

and shows that the band gaps are very sensitive to these 
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changes and this parameter can be adjusted to obtain a 

larger relative bandwidth in the desired frequency range. 

From the comparison of Figure 3 (η=0) with the other 

figures, we can see that with help of this method, we can 

to create band gaps in different frequency ranges and 

different widths. In addition, it can be seen that in the 

η=50 (Figure 4 (f)), the bandwidth of the band gap is 1.43 

of the bandwidths in the mode without rode B (η =0) 

(Figure 3). In addition, it can be seen that in some values 

of η we have two or three bands at the same time at the 

different frequency ranges. According to the diagrams, it 

can be seen that the changes in the bands are due to the 

displacement of higher modes and their movement 

towards higher or lower frequencies. In fact, it can be said 

that the non-uniform volume distribution of piezoceramic 

rods caused these changes. 

With the increase of η, phase b elements appear from 

zero and their effect gradually increases. Due to the fact 

that these elements are located in the space between the 

elements of phase a, the distance between the elements is 

reduced, and as a result, it is expected that the forbidden 

gap at low frequency will gradually disappear and be 

transferred to higher frequencies. As seen in Figure 4, 

this effect occurs by transferring frequency modes to the 

forbidden gap. As a result, while the energy of the lowest 

three frequency bands remains almost constant, the 

frequency of its upper edge gradually decreases. 

The first energy gap is caused by the destructive 

combination of waves moving in the x or y direction and 

relatively reflected from the plates containing the phase 

a elements. Decreasing the volume of phase a elements 

and increasing the effect of phase b elements on these 

reflections with increasing η causes the size of this gap to 

decrease until finally it disappears for η=15 by 

decreasing the energy of the fourth frequency band. 

  On the other hand, the second frequency gap appears 

immediately with the increase of η from zero. Due to the 

high frequency of this gaffe, its creation can be attributed 

to the destructive combination of waves that move 

perpendicular to the planes of phases a and b (along the 

x or y axes) and are partially reflected from these phases. 

With the increase of η, the width of this gap increases 

initially with the increase of η, but finally, this gap closes 

by reducing the frequency of its upper edge and 

increasing the energy of its lower edge at η=0.25. 

The third energy gap, which is the main one in this 

research, starts to appear from η=10. This gaffe is caused 

by the destructive superposition of waves that move 

along the bisector of the x and y axes and are relatively 

reflected from the phase elements a and b. The increase 

in the volume of phase b and the simultaneous decrease 

in the volume of phase a with the increase of η causes the 

volume of these two elements to approach each other. As 

a result, the width of the gap increases continuously with 

the increase of η, and at η=50, where the volume of the 

two elements is equal, the gap finds its maximum value. 

In fact, for η=50, the final grid is a simple square grid, 

which is rotated by 45 degrees relative to the initial grid 

of η=0, and the distance between its elements is a/sqrt(2). 

For this reason, the width of the gap in this case is sqrt(2) 

equal to the case of η=0 

We calculated how in the entire inverted space and 

observed that this gap has extended in the entire inverted 

space. 

 In the past research, such as the research reported by 

Zhang Hua et al [15], changes in the filling fraction of 

piezoceramic were usually used to change the bandgap, 

which causes changes in the functional characteristics of 

the piezoceramic, such as effective  electromechanical 

coupling coefficient, characteristic impedance, 

longitudinal velocity and density, but in this case, without 

changing the piezoceramic filling fraction, the bandwidth 

and location of the band gaps can be controlled and 

according to the practical needs, the appropriate 

bandwidth and the location can be obtained. 

 

3. Conclusion 
 

In this article the phononic band structures of a two-

dimensional body center 1-3 piezocomposite consisting 

of PZT-5H rod and polyethylene terephthalate polymer 

matrix have been investigated theoretically. By 

considering the volume fraction of PZT rods as constant 

as 50% the band structure of the system has been 

surveyed as function of the ratio η, i.e. the volume 

fraction of the PZT rod in the center of a unit cell to the 

total volume of the PZT rods in the unit cell.  The results 

show that for the whole range of variation of  η  there 

exist at least one complete band gap in the band structure 

of the considered structure while no gap exists below 

f.a=110 m/s and above f.a=2530 m/s. It is shown that the 

band structure consists of three main band gap (in 

addition with two minor ones) whose maximums occur 

at  η=0% (first band gap),  η=20% (second band gap) and  

η=50% (third band gap) that the latter one is the largest 

band gap (equal to 564m/s) of the considered system. 
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