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A B S T R A C T  
 

 

The reverse chemical co-precipitation method was used for synthesis of the pure phase multiferroic 
BiFeO3 (BFO) nanoparticles. Influence of different pH values on the microstructure and magnetic 
properties of the BFO nanopowders was investigated. The phase formation and the existence of 
impurity phases (like Bi25FeO39 and Bi2Fe4O9) have been studied using X-ray diffractometry (XRD). 
The morphological features of the nanopowders were characterized using field emission scanning 
electron microscopy (FESEM) and the presence of absorption bands at 400 to 3600 cm-1 was 
investigated by Fourier transformed infrared (FTIR) spectroscopy. The magnetic evaluation of the 
synthesized powders was measured using vibrating sample magnetometery (VSM). The XRD results 
showed that the BFO powders have R3c crystal structure for all samples and also the diffraction 
patterns are perfectly indexed to the standard XRD card of BFO.  The FESEM micrographs showed 
irregular shape and average particle size of 71 to 95 and 182 nm for the as-synthesized powders with 
the pH values of 8.5, 9.5 and 10.5, respectively. The magnetic hysteresis loops indicated 
antiferromagnetic (weak ferromagnetic) behavior for all samples at room temperature. Whereas the 
particles size of as-prepared powders were lower than the spiral spin cycloid (62 nm) and because of 
high surface-to-volume ratio of nanoparticles, which causes more uncompensated spins from the 
surface, the weak ferromagnetic behavior has been observed. 

 

1. INTRODUCTION1 

Multiferroic materials simultaneously possess at least 
two ferroic orders, including (anti)ferromagnetism, 
ferroelectricity, ferroelasticity and ferrotoroidicity [1]. 
In the recent decades, multiferroic materials have 
received much interest because of their novel potential 
applications in the storage devices [2], actuators [3], 
microelectronic device [4], non-volatile memories [5] 
and sensors [6]. Perovskite-type bismuth ferrite (BFO) 
which emerges interesting physical phenomena such as 
visible light effect [7], photovoltaic performance [8], 
giant electrochoromic behavior [9], photoluminescence 
effect [10], magnetoelectric coupling [11] and 
multiferroic properties [12] has been a suitable 
candidate for electrooptic [13], catalytic [14], dielectric 
[15], optical [16] and spintronic [17] applications. 
Perovskite-type bismuth ferrite (BFO) which possesses 
high Néel and Curie temperatures (T�=370 ̊ C and 
T�=825-840 ̊ C) is the most important single-phase 
multiferroic which is extensively effective at room 
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temperatures [18, 19], but owing to some weak 
properties such as electrical resistivity, leakage current 
density and low remnant polarization in the bulk form, 
the BFO industrial application in microelectronic 
devices has been limited [20-22]. BFO has the 
perovskite crystallographic structure which belongs to 
the space group R3c, No.161 with lattice parameters of 
a��=3.965A ̊ and α��=89.3˚-89.4 ̊. Bismuth ferrite has 
the G-type antiferromagnetic ordering with long period 
spin cycloid structure (620-640 nm) [20, 23]. The 
magnetic transition temperature of BFO has been 
reported previously (T�=370 ̊ C) [24]. Moreover, 
electrical parameters of BFO such as dielectric constant, 
polarization hysteresis loops and leakage current, have 
been studied rather extensively [25-28]. The small band 
gap of BFO (2.6-2.8 eV) caused its efficient visible light 
photocatalitic activity [29]. In the early 1967, 
Achenbach et al. [30] prepared the single phase 
polycrystalline BFO by solid state reaction of Bi�O� and 
Fe�O� at temperatures over 700 ̊C. However, because of 
some disadvantages of their method such as high 
reaction temperature, large particle size and presence of 
impurities, new methods such as chemical co-
precipitation [31, 32], hydrothermal [33], solvothermal 
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[34], sonochemical [35], microemulsion [36], 
polyacrylamid gel [37], ferrioxalate [38], simple sol-gel 
[39], combustion synthesis [40], molten salt [41], 
tartaric acid assisted gel strategy [42], polymeric 
precursor [43], and mechanochemical procedure [44] 
are nowadays used for synthesis of  BFO nanopowders. 
Among them, the co-precipitation process involves 
separation of a solid containing various ions from a 
solution phase. In this wet chemical process, the acidic 
cations solution (nitrates or chlorides) and basic 
precipitant (usually NH4OH, NaOH and KOH) react 
together and the amorphous hydroxide precipitates are 
separated from the solution. The chemical co-
precipitation process is divided to four classifications of 
normal (traditional), reverse (inverse), homogeneous 
(modified) and fast co-precipitations. The main 
difference of these processes is the trend of pH 
changing. In the normal co-precipitation, the 
precipitating agent is added to the cations solution that 
causes the pH value rises from acidic region to basic 
region while in the reverse co-precipitation this addition 
is inversed thereby the pH value always lies in the basic 
region. So far, all of the reports have focused on the 
homogeneous co-precipitation in which the process is 
very sensitive to pH control [45] which is 
technologically expensive.   
The aim of this paper is to synthesize BFO 
nanoparticles via reverse chemical co-precipitation 
method in which there is no need to control the pH and 
so it is considerably cheaper and easier than 
homogeneous methods. Reverse co-precipitation has 
been used effectively for synthesis of some electro-
ceramic nanoparticles [46, 47], but to best of our 
knowledge there is no report on the field of BFO.  

2. MATERIALS AND METHODS 

The BFO nanoparticles were synthesized by the reverse 
chemical co-precipitation process. Fig. 1, shows the 
preparation flowchart which was considered for 
synthesizing BFO. In this method, bismuth subnitrate 
Bi5H9N4O22 (Merck kGaA 98.9%) and iron nitrate nona-
hydrate Fe(NO�)�. 9H�O  (Merck KGaA 98.9%), (at a 
molar ratio of 1:1) were dissolved in 2M nitric acid 
(HNO3 , scharlau 99.9%) at room temperature. Cation 
solutions were mixed and stirred severely for 30 
minutes to obtain a homogenous transparent mixture. 
2M Sodium hydroxide (NaOH) was used as the 
precipitating agent. In the reverse co-precipitation 
process, cations solution and precipitating agent were 
vented into the separator funnel and beaker, 
respectively. Then cations solution was added dropwise 
into the precipitating agent under vigorous stirring 
condition until the pH values of 8.5, 9.5 and 10.5 were 
reached. The chemical co-precipitation process took 
about 10 minutes and the suspension was continually 
washed until the pH of 7 was obtained and the produced 

powder was dried in an oven at 80 ̊C for 24h. Finally the 
dried chunks were crushed in a mortar to obtain the 
amorphous powders. For crystallization and phase 
formation, the powders were calcined at 550 ̊C for 1h to 
obtain pure phase bismuth ferrite. 

2.1. Characterization                               The calcination 
temperature was chosen by using thermogravimetric 
differential thermal analysis (TG-DTA) with heating 

rate of  5	 ̊C min�  . In order to identify purity of calcined 

parent phases and their presence in composite 
specimens, an X-ray diffractometer (BRUKER X-Ray) 

using the Cu-Kα radiation and scan rate of 0.05 ˚ min�  in 

the scattering angular range (2θ) of 10-90˚ was utilized.  
Fourier transformed infrared (FT-IR) spectrum was 
recorded using a spectrometer (FT-IR SHIMADZU). 
The morphology and size distribution of the BFO 
powders were obtained by using the field emission 
scanning electron microscope (MIRA3- TSCAN). The 
magnetic hysteresis loops with external magnetic field 
of ±1.0 T were measured at room temperature using a 
vibration sample magnetometer (VSM AGFM). 

 
Figure 1. Preparation flowchart of the reverse co-precipitation 
procedure for synthesis of the BFO. 

3. RESULT AND DISCUSSION 

3.1. Thermal behavior                               The TG-DTA 
curves of the un-calcined powders synthesized by the 
reverse co-precipitation method with the pH value of 
9.5 are shown in Fig. 2. The peak located at 263.2 ̊C in 
the DTA curve is related to the decomposition of 
hydrates, nitrates and retained water on the surface of 
nanoparticles, which is accompanied by a large weight 
loss in this stage. The peak presented at 470.8˚C, 
corresponds to crystallization of BFO powders, which 
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was used for selecting the appropriate calcination 
temperature of 550˚C in this study. Formation of the 
BFO is based on the following chemical reaction [45]. 
After decomposition of the compounds and formation of 
the crystalized phase, the TG curve shows the total 
weight loss of approximately 16% equal to the 
calculated weight loss for the total calcination reaction, 
which is related to releasing H2O during the 
crystallization reaction. 

Bi(OH)� + Fe(OH)� → BiFeO� + 3H�O ↑                 (1) 

Usually, a ferroelectric to paraelectric phase transition 
can be seen in the BFO by the low intensity peak in the 
DTA without any weight loss in the TG curves [48]. 
This situation in the TG-DTA curve is presented at 
818.7˚C [49]. 

 
Figure 2. TG-DTA curves of the precursor sample 
synthesized with pH value of 9.5. 

3.2. XRD analysis                              The phase 
formation of the BFO samples which were calcined at 
550 ̊C was characterized using X-ray diffraction (XRD). 
Fig. 3. demonstrates the XRD patterns of reversely co-
precipitated samples with pH values of 8.5, 9.5 and 
10.5. Whereas the distribution of Bi and Fe ions was 
homogeneous in the reverse co-precipitation, and all 
samples show pure phase BFO. 

 
Figure 3. XRD patterns of the calcined BFO samples with 
different pH values. 

However, diffraction patterns of calcined samples match 
perfectly with the standard card of JCPDS No. 00-014-
0181, confirming that they contain pure BiFeO3 without 
any unwanted secondary phase. Bravias lattice was 

primitive cubic (a=3.95Å, space group R3c No.161). 
The maximum crystallite size (54 nm) was calculated 
for pH = 10.5. 

3.3. FT-IR spectroscopy                                The FT-IR 
spectra of the precursor and crystalline BFO powders 
derived from the reverse co-precipitation are shown in 
Fig. 4. Which were calcined at 550 ̊C. The spectra are in 
good agreement with the TG-DTA curve. After 
calcinations, some of the bands are eliminated or moved 
up, which can be related to compounds evaporation or 
their contribution in the reaction [50]. The peaks at 3417 
cm-1 and 1625 cm-1 are attributed to the stretching and 
bending of the H2O molecules, respectively [51]. In the 
precursor sample, the strong peaks near 1384 cm-1 and 
846 cm-1 can be related to the variation of NO�

� [52, 53]. 
The ferrite characteristic bands in the range of 400-600 
cm-1are associated with metallic ions. The band with a 
higher wave number (around 575 cm-1) is connected 
with the intrinsic characteristic stretching vibration of 
metal at tetrahedral sites and the other one with lower 
intensity and wavenumber (around 408 cm-1) is related 
to the intrinsic characteristic stretching vibration of 
metal at octahedral sites [54]. These peaks are 
characteristic for BFO with perovskite structure. 

 Figure 4. FT-IR spectrum of the BFO powders precursor and 
calcined samples. 

3.4. Microstructural observation 
The morphological features of powder samples, particle 
size and distribution were observed using a field 
emission scanning electron microscopy (FESEM), 
equipped with energy dispersive X-ray spectrometer 
(EDX). Fig. 5 depicts the FESEM micrographs of the 
precursor powder with ultrafine grains (less than 10 nm) 
prepared by the reverse chemical co-precipitation. The 
agglomeration of the particles is clearly seen. The 
reason for agglomeration is fast (uncontrolled) 
precipitation reaction and also the tendency to minimize 
the surface free energy of nanoparticles and the strong 
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attractive interaction between BFO nanoparticles. The 
EDX analysis of the reversely synthesized sample with 
the pH value of 9.5 is illustrated in Fig. 6. This pattern 
confirms that the elements in the samples are limited to 
Bi, O and Fe. The atomic percent of Bi, Fe and O are 
listed in the inset table in Fig. 6. The Bi Fe⁄  ratio is 
1.053, which is very close to the stoichiometric ratio for 
pure phase of BFO. Fig. 7 shows the FESEM 
micrographs of BFO samples of the reversely co-
precipitated powders with different pH values calcined 
at 550 ̊C for 1h. Agglomerated morphology in Fig. 7 
and granular shape of particles in all samples can clearly 
be seen. The micrographs showed the average particle 
sizes of 71 to 95 and 182 nm for the as-synthesized 
powders with the pH values of 8.5, 9.5 and 10.5, 
respectively. To Considering the Fig. 7, the average size 
of particles increases with increasing the pH value. 
Concentration of OH� ions increases with increasing the 
pH value in the solution and results in accelerated 
precipitation reaction that causes the larger 
agglomerated precipitates and particle size. Therefore, 
final particle size increases with increasing the pH value 
as shown in the micrographs. 

 
Figure 5. FESEM micrographs of synthesized precursor with 
the pH value of 9.5. 

 Figure 6. EDX analysis of the reversely synthesized sample 
with the pH value of 9.5. 

 
Figure 7. FESEM micrographs of the calcined BFO samples 
synthesized by the reverse co-precipitation method with the 
pH= 8.5, 9.5 and 10.5. 

3.5. Magnetization                               The magnetic 
hysteresis loops of the calcined BFO nanoparticles 
synthesized by the reverse co-precipitation with an 
applied magnetic field in the range of ± 1.0 T at room 
temperature was also measured in this paper. As shown 
in Fig. 8, the magnetic hysteresis loops showed 
antiferromagnetic behavior and the magnetization is 
increased with decrement of the pH value. The 
important factor for the appearance of magnetization in 
antiferromagnetic materials is the particles size effect 
and specific surface area of particles[55]. Due to higher 
surface-to-volume ratio in produced nanoparticles, the 
uncompensated surface spins do not depend 
magnetically on spin arrangement. Also, the emersion 
of magnetization in nano-sized BFO can be explained as 
follows: 
The uncompensated spins from the surface can improve 
the magnetization of BFO nanoparticle [56]. In the 
achieved BFO powders, the particle size decreases as 
the pH value decreases. Thus, the large fraction of 
uncompensated spins from the surface causes 
enhancement of magnetic properties due to high 
surface-to-volume ratio in the nanoparticles [57]. 

 
Figure 8. The magnetization curves of the as-prepared 
powders with different pH values. 

4. CONCLUSIONS 

The BFO nanoparticles were successfully synthesized 
via the reverse chemical co-precipitation method. The 
TG-DTA analysis revealed that the crystallization of 
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BFO powders occurs at 470.8 ˚C, and the peak at 818.7 
˚C in the heating cycle obtains the Curie point. The 
XRD patterns indicate the formation of pure phase in 
this method. The electron microscopy of the samples 
showed that the particle size increases as the pH value 
increases. The magnetic hysteresis loops confirmed an 
antiferromagnetic (weak ferromagnetic) behavior of the 
BFO nanoparticles synthesized by reverse co-
precipitation at room temperature. The average 
diameters of the achieved BFO powders are smaller 
than the spiral spin structure period. Besides, as the pH 
value decreases, the particle size decreases that is 
responsible for the large fraction of uncompensated 
spins from the surface, which causes improvement of 
magnetization due to the high surface-to-volume ratio of 
the nanoparticles. 
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