Crystal Structure and Lattice Parameter Investigation of La3+ Substituted CeO2 in LaxCe1-xO2-X/2 Synthesized by Solid-State Method

Document Type : Original Research Article


Ceramics Department, Materials and Energy Research Center, Meshkin Dasht, Alborz, Iran


Lanthanum (La) doped Ceria (CeO2) has attracted considerable interest as a candidate material for thermal barrier coating (TBC) because of its low thermal conductivity and potential capability to be operated above 1250°C. In this study, La2Ce2O7 powder was synthesized through the ball mill method. The crystal structure of La3+ substituted CeO2 solid solution was investigated by X-ray diffraction in LaxCe1-xO2-x/2 (0<x< 0.5). The fluorite structure of CeO2 did not change although La3+ was the largest trivalent rare-earth ion. The lattice parameter changed from 5.41 to 5.59Å by increasing La content. Changes in the lattice parameters of LaxCe1-xO2-x/2 that were compared with the theoretical values measured by XRD were obtained based on the oxygen vacancy model. The theoretical lattice parameters were larger than the lattice parameters calculated from the X-ray diffraction pattern. Moreover, the Williamson–Hall equation was used to measure the crystallite size and strain in the LaxCe1-xO2-x/2 lattice as a function of the lanthanum content. The results showed that the presence of lanthanum in the structure reduced the crystallite size.


Main Subjects

1.     Tinwala, H., Shah, D. V., Menghani, J., Pati, R., “Synthesis of La2Ce2O7 Nanoparticles by Co-Precipitation Method and Its Characterization”, Journal of Nanoscience and Nanotechnology,Vol. 14, No. 8, (2014), 6072–6076.
2.     Pati, R. K., Iee, I. C., Hou, S., Akhuemonkhan, O., Gaskell, K. J., Wang, Q., Frenkel, A. I., Chu, D., Salamanca-Riba, L. G., Ehrman, S. H., “Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction”, ACS Applied Materials & Interfaces,Vol. 1, No. 11, (2009), 2624–2635.
3.     Wang, C., Huang, W., Wang, Y., Cheng, Y., Zou, B., Fan, X., Yang, J., Cao, X., “Synthesis of Monodispersed La2Ce2O7 Nanocrystals via Hydrothermal Method: A Study of Crystal Growth and Sintering Behavior”, International Journal of Refractory Metals and Hard Materials, Vol. 31, (2012), 242–46.
4.     Wang, Y., Guo, H., Gong, S., “Thermal Shock Resistance and Mechanical Properties of La2Ce2O7 Thermal Barrier Coatings with Segmented Structure”, Ceramics International, Vol. 35, No. 7, (2009), 2639–2644.
5.     Gill, J. K., Pandey, O. P., Singh, K., “Ionic Conductivity, Structural and Thermal Properties of Ca2+ Doped Y2Ti2O7 Pyrochlores for SOFC”, International Journal of Hydrogen Energy,Vol. 37, No. 4, (2012), 3857–3864.
6.     O'neill, W. M., Morris, M. A., “The Defect Chemistry of Lanthana–Ceria Mixed Oxides by MASNMR”, Chemical Physics Letters,Vol. 305, No. 5–6, (1999), 389–394.
7.     Bae, J. S., Choo, W. K., Lee, C. H., “The Crystal Structure of Ionic Conductor LaxCe1–XO2–x/2”, Journal of the European Ceramic Society,Vol. 24, No. 6, (2004), 1291–1294.
8.     Ma, W., Ma, Y., Gong, S. K., Xu, H. B., Cao, X. Q., “Thermal Cycling Behavior of Lanthanum-Cerium Oxide Thermal Barrier Coatings Prepared by Air Plasma Spraying”, In Key Engineering Materials, Vol. 336, (2007), 1759–1761. Trans Tech Publications Ltd.
9.     Zhang, H., Sun, J., Duo, S., Zhou, X., Yuan, J., Dong, S., Yang, X., Zeng, J., Jiang, J., Deng, L., Cao, X., “Thermal and Mechanical Properties of Ta2O5 Doped La2Ce2O7 Thermal Barrier Coatings Prepared by Atmospheric Plasma Spraying”, Journal of the European Ceramic Society,Vol. 39, No. 7, (2019), 2379–2388.
10.   Gao, L., Guo, H., Gong, S., Xu, H., “Plasma-Sprayed La2Ce2O7 Thermal Barrier Coatings against Calcium–Magnesium–Alumina–Silicate Penetration”, Journal of the European Ceramic Society,Vol. 34, No. 10, (2014), 2553–2561.
11.   Xu, J., Zhang, Y., Liu, Y., Fang, X., Xu, X., Liu, W., Zheng, R., Wang, X., “Optimizing the Reaction Performance of La2Ce2O7-based Catalysts for Oxidative Coupling of Methane (OCM) at Lower Temperature by Lattice Doping with Ca Cations”, European Journal of Inorganic Chemistry, Vol. 2019, No. 2, (2019), 183-194.
12.   Khademinia, S., Behzad, M., “Lanthanum Cerate (La2Ce2O7): Hydrothermal Synthesis, Characterization and Optical Properties”, International Nano Letters,Vol. 5, No. 2, (2015), 101–107.
13.   Ma, W., Gong, S., Xu, H., Cao, X., “The Thermal Cycling Behavior of Lanthanum–Cerium Oxide Thermal Barrier Coating Prepared by EB–PVD”, Surface and Coatings Technology, Vol. 200, No. 16–17, (2006), 5113–5118.
14.   Morris, B. C., Flavell, W. R., Mackrodt, W. C., Morris, M. A., “Lattice Parameter Changes in the Mixed-Oxide System Ce1–XLaxO2–x/2: A Combined Experimental and Theoretical Study”, Journal of Materials Chemistry,Vol. 3, No. 10, (1993), 1007–1013.
15.   Andrievskaya, E. R., Kornienko, O. A., Sameljuk, A. V., Sayir, A., “Phase Relation Studies in the CeO2–La2O3 System at 1100–1500 °C”, Journal of the European Ceramic Society,Vol. 31, No. 7, (2011), 1277–1283.
16.   Zhang, F. X., Tracy, C. L., Lang, M., Ewing, R. C., ”Stability of Fluorite-Type La2Ce2O7 Under Extreme Conditions”, Journal of Alloys and Compounds, Vol. 674, (2016), 168-173.
17.   Mote, V. D., Purushotham, Y., Dole, B. N., “Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles”, Journal of Theoretical and Applied Physics,Vol. 6, No. 1, (2012), 6.
18.   Kurian, M., Kunjachan, C., “Investigation of Size dependency on Lattice Strain of Nanoceria Particles Synthesised by Wet Chemical Methods”, International Nano Letter,s, Vol. 4, No. 4, (2014), 73–80.
19.   Liang, S., Broitman, E., Wang, Y., Cao, A., Veser, G., “Highly Stable, Mesoporous Mixed Lanthanum–Cerium Oxides with Tailored Structure and Reducibility”, Journal of Materials Science, Vol. 46, No. 9, (2011), 2928–2937.
20.   Loche, D., Morgan, L. M., Casu, A., Mountjoy, G., O'Regan, C., Corrias, A., Falqui, A., “Determining the Maximum Lanthanum Incorporation in the Fluorite Structure of La-Doped Ceria Nanocubes for Enhanced Redox Ability”, RSC Advances, Vol. 9, No. 12, (2019), 6745-6751.
21.   Fichthorn, K. A., “Atomic-Scale Aspects of Oriented Attachment”, Chemical Engineering Science, Vol. 121, (2015), 10-15.
22.   Wang, F., Richards, V. N., Shields, S. P., Buhro, W. E., “Kinetics and Mechanisms of Aggregative Nanocrystal Growth”, Chemistry of Materials, Vol. 26, No. 1, (2014), 5-21.
23.   Lv, W., He, W., Wang, X., Niu, Y., Cao, H., Dickerson, J. H., Wang, Z., “Understanding the Oriented-Attachment Growth of Nanocrystals from an Energy Point of View: A Review”, Nanoscale, Vol. 6, No. 5, (2014), 2531-2547.
24.   Bezkrovnyi, O., Małecka, M. A., Lisiecki, R., Ostroushko, V., Thomas, A. G., Gorantla, S., Kepinski, L., “The effect of Eu doping on the growth, structure and red-ox activity of ceria nanocubes”, CrystEngComm, Vol. 20, No. 12, (2018), 1698-1704.
25.   Lin, M., Fu, Z. Y., Tan, H. R., Tan, J. P. Y., Ng, S. C., Teo, E., “Hydrothermal Synthesis of CeO2 Nanocrystals: Ostwald Ripening or Oriented Attachment?”, Crystal Growth & Design, Vol. 12, No. 6, (2012), 3296-3303.
26.   Deshpande, S., Patil, S., Kuchibhatla, S. V., Seal, S., “Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide”, Applied Physics Letters, Vol. 87, No. 13, (2005), 133113.