Studying the Optical Density, Topography, and Structural Properties of CZO and CAZO Thin Films at Different Annealing Temperatures

Document Type : Original Research Article


1 Department of Physics, Faculty of Science, Malayer University, Malayer, Iran

2 Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran


In this paper, CAZO and CZO thin films were deposited on quartz substrates by radio frequency magnetic sputtering and annealed at different temperatures of 400, 500, and 600°C. One of the most structural studies of thin-film materials is the analysis of the results that are obtained from AFM images. The most variations in optical density of CZO and CAZO thin films were at energy points to about 3eV and 4eV, respectively. Fractal dimensions and structural properties of films, as well as the optical density of CZO and CAZO thin films, were investigated. The AFM images were used to estimate the lateral size of the nanoparticles on the surface of the films. Annealed films at 500°Chad the maximum values for the lateral size of the nanoparticles. These values for the as-deposited films and annealed films at different temperatures of 400, 500, and 600°C were about 7.9,8.1, 6.5, and 7.75nm for CZO thin films, respectively. In addition, the lateral size of CAZO thin films was about 6.8, 6.27, 6.04, and 6.71, respectively. Films that annealed at 500°Chad the minimum value of fractal dimensions. The power spectral density of all films reflects the inverse power low variations, especially in the high spatial frequency region, indicating the presence of fractal components in prominent topographies. The maximum variations in the bearing area were as much as 0.015μm and 0.01μm for CZO thin films and CAZO thin films, respectively.


Main Subjects

1.     Ţălu, Ş., “Micro and nanoscale characterization of three dimensional surfaces: Basics and applications”, Napoca Star Publishing House, Cluj-Napoca, Romania, (2015), 350.
2.     Dejam, L., Solaymani, S., Achour, A., Stach, S., Ţălu, Ş., Nezafat, N. B., Dalouji, V., Shokri, A. A., Ghaderi, A., “Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films”, Chemical Physics Letters, Vol. 719, (2019), 78-90.
3.     Sobola, D., Ţălu, Ş., Solaymani, S., Grmela, L., “Influence of scanning rate on quality of AFM image: Study of surface statistical metrics”, Microscopy Research and Technique, Vol. 80, No. 12, (2017), 1328-1336.
4.     Ţălu, Ş., Bramowicz, M., Kulesza, S., Dalouji, V., Solaymani, S., Valedbagi, S., “Fractal features of carbon–nickel composite thin films”, Microscopy Research & Technique, Vol. 79, No. 12, (2016), 1208-1213.
5.     Stach, S., Sapota, W., Ţălu, Ş., Ahmadpourian, A., Luna, C., Ghobadi, N., Arman, A., Ganji, M., “3-D Surface stereometry studies of sputtered TiN thin films obtained at different substrate temperatures”, Journal of Materials Science: Materials in Electronics, Vol. 28, No. 2, (2017), 2113-2122.
6.     Zare, M., Solaymani, S., Shafiekhani, A., Kulesza, S., Ţălu, Ş., Bramowicz, M., “Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting”, Scientific Reports, Vol. 8, No. 1, (2018), 1-11.
7.     Hoseinzadeh, T., Solaymani, S., Kulesza, S., Achour, A., Ghorannevis, Z., Ţălu, Ş., Bramowicz, M., Ghoranneviss, M., Rezaee, S., Boochani, A., Maozaffari, N., “Microstructure, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures”, Journal of Electroanalytical Chemistry, Vol. 830-831, (2018), 80-87.
8.     Solaymani, S., Kulesza, S., Ţălu, Ş., Bramowicz, M., Nezafat, N. B., Dalouji, V., Rezaee, S., Karami, H., Malekzadeh, M., Dorbidi, E. S., “The effect of different laser irradiation on rugometric and microtopographic features in zirconia ceramics: Study of surface statistical metrics”, Journal of Alloys and Compounds, Vol. 765, (2018), 180-185.
9.     Naseri, N., Ţălu, Ş., Kulesza, S., Qarechalloo, S., Achour, A., Bramowicz, M., Ghaderi, A., Solaymani, S., “How morphological surface parameters are correlated with electrocatalytic performance of cobalt-based nanostructures”, Journal of Industrial and Engineering Chemistry, Vol. 57, (2018), 97-103.
10.   Dejam, L., Solaymani, S., Achour, A., Stach, A., Ţălu, Ş., Nezafat, N. B., Dalouji, V., Shokri, A. A., Ghaderi, A., “Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films”, Chemical Physics Letters, Vol. 719, (2019), 78-90.
11.   Wang, Y., Liu, F., Ji, Y., Yang, M., Liu, W., Wang, W., Sun, Q., Zhang, Z., Zhao, X., Liu, X., “Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance super capacitors”, Dalton Transactions, Vol.44, No. 22, (2015), 10431-10437.
12.   Sobola, D., Ţălu, Ş., Solaymani, S., Grmela, L., “Influence of scanning rate on quality of AFM image: Study of surface statistical metrics”, Microscopy Research and Technique, Vol. 80, No. 12, (2017), 1328-1336.
13.   Dalouji, V., Solaymani, S., Rezaee, S., Mehrparvar, D., “Nonmetal—Metal transition in carbon films embedded by Ni nanoparticles: The temperature coefficient of resistivity (TCR), Raman spectra and surface morphology”, Optik ,Vol. 156, (2018), 338-345.
14.   Matsumura, M., Camata, R. P., “Pulsed Laser Deposition and Photoluminescence Measurements of ZnO Thin Films on Flexible Polyimide Substrates”, Thin Solid Films, Vol. 476, No. 2, (2005), 317-321.
15.   Chaabouni, F., Costa, L. C., Abaab, M., Monteiro, J., “Characterization of n-Type: ZnO: Al Films Grown by Magnetron Sputtering”, In Materials Science Forum (Vol. 514-516, 1358-1362), Trans Tech Publications Ltd, Zurich-Uetikon, Switzerland, (2006).
16.   Minami, T., Nishi, Y., Miyata, T., “Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells”, Thin Solid Films, Vol. 549, (2013), 65–69.
17.   Casadei, A., Pecora, E. F., Trevino, J., Forestiere, C., Ruffer, D., Russo-Averchi, E., Matteini, F., Tutuncuoglu, G., Heiss, M., Fontcuberta i Morral, A., Dal Negro, L., “Photonic-plasmonic coupling of GaAs single nanowires to optical nano antennas”, Nano Letters, Vol. 14, No. 5, (2014), 2271–2278.
18.   Kim, T. W., Ha, H. W, Paek, M. J., Hyun, S. H., Choy, J. H., Hwang, S. J., “Unique phase transformation behavior and visible light photocatalytic activity of titanium oxide hybridized with copper oxide”, Journal of Materials Chemistry, Vol. 20, No.16, (2010), 3238–3245.
19.   Olsen, L. C., Bohara, R. C., Urie, M. W., “Explanation for low-efficiency Cu2O Schottky-barrier solar cells”, Applied Physics Letters, Vol. 34, No. 1, (1979), 47–49.
20.   Nakanishi, Y., Miyake, A., Kominami, H., Aoki, T., Hatanaka, Y., Shimaoka, G., “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Applied Surface Science, Vol. 142, No. 1-4, (1999), 233-236.
21.   Ganesh, V., Salem, G. F., Yahia, I. S., Yakuphanoglu, F., “Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics”, Journal of Electronic Materials, Vol. 47, No. 3, (2018), 1798-1805.
22.   Zheng, J. H., Song, J. L., Li, X. J., Jiang, Q., Lian, J. S., Experimental and first‐principle investigation of Cu‐doped ZnO ferromagnetic powders”, Crystal Research and Technology, Vol. 46, No. 11, (2011), 1143-1148.
23.   Jin, M., Feng, J., De-Heng, Z., Hong-lei, M., Shu-Ying, L., “Optical and electronic properties of transparent conducting ZnO and ZnO: Al films prepared by evaporating method”, Thin Solid Films, Vol. 357, No. 2, (1999), 98-101.
24.   Lee, J. H., Chou, C. Y., Bi, Z., Tsai, C. F., Wang, H., “Growth-controlled surface roughness in Al-doped ZnO as transparent conducting oxide”, Nanotechnology, Vol. 20, No. 39, (2009), 395704.
25.   Zang, Z., Wen, M., Chen, W., Zeng, Y., Zu, Z., Zeng, X., Tang, X., “Strong yellow emission of ZnO hollow nano spheres fabricated using polystyrene spheres as templates”, Materials & Design, Vol. 84, (2015), 418–421.
26.   Jimenez-Gonzalez, A. E., Urueta J. A. S., Suarez-Parra, R., “Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by sol gel technique”, Journal of Crystal Growth, Vol. 192, No. 3-4, (1998), 430-438.
27.   Tang, W. Cameron, D. C., “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process”, Thin Solid Films, Vol. 238, No. 1, (1994), 83-87.
28.   Vigil, O., Cruz, F., Santana, G., Vaillant, L., Morales-Acevedo, A., Contreras-Puente, G., “Influence of post-thermal annealing on the properties of sprayed cadmium–zinc oxide thin films”, Applied Surface Science, Vol.161, No. 1-2, (2000), 27-34.
29.   Nunes, P., Malik, A., Fernandes, B., Fortunato, E., Vilarinho, P., Martins, R., “Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis”, Vacuum, Vol. 52, No. 1-2, (1999), 45-49.
30.   Nunes, P., Fortunato, E., Martins, R., “Influence of the post-treatment on the properties of ZnO thin films”, Thin Solid Films, Vol. 383, No. 1-2, (2001), 277-280.
31.   Jin, B. J., Woo, H. S., Im, S., Bae, S. H., Lee, S. Y., “Relationship between photoluminescence and electrical properties of ZnO thin films grown by pulsed laser deposition”, Applied Surface Science, Vol.169–170, (2001), 521-524.
32.   Meng, X. Q., Zhen, W., Guo, J. P., Fan, X. J., “Structural, optical and electrical properties of ZnO and ZnO-Al2O3 films prepared by dc magnetron sputtering”, Applied Physics A, Vol. 70, No. 4, (2000), 421–424.
33.   Minemoto, T., Negami, T., Nishiwaki, S., Takakura, H., Hamakawa, Y., “Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering, Thin Solid Films, Vol. 372, No. 1-2, (2000), 173-176.
34.   Minami, T., Sonohara, H., Kakumu, T., Takata, S., “Highly Transparent and Conductive Zn2In2O5 Thin Films Prepared by RF Magnetron Sputtering”, Japanese Journal of Applied Physics, Vol. 34, No. 8A, (1995), L971.
35.   Minami, T., Yamamoto, T., Miyata, T., “Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering”, Thin Solid Films, Vol. 366, No. 1-2, (2000), 63-68.
36.   Tominaga, K., Kataoka, M., Manabe, H., Ueda, T., Mori, I., “Transparent ZnO: Al films prepared by co-sputtering of ZnO: Al with either a Zn or an Al target”, Thin Solid Films, Vol. 290–291, (1996), 84-87.
37.   Serin, T., Atilgan, A., Kara, I., Yildiz, A., “Electron transport in Al-Cu co-doped ZnO thin films”, Journal of Applied  Physics, Vol. 121, No. 9, (2017), 095303.
38.   Dalouji, V., Power spectral densities and polaron hopping conduction parameters in carbon films embedded by nickel nanoparticles, Optik, Vol. 148, (2017), 1-7.
39.   Hassanien, A. S., Akl, A. A., “Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films”, Superlattices and Microstructures, Vol. 89, (2016), 153-169.
40.   Van Zeghbroeck, B., “Principles of Electronic Devices”, Boulder, University of Colorado, (1997).
41.   Raoufi, D., “Fractal analyses of ITO thin films: A study based on power spectral density”, Physica B: Condensed Matter, Vol. 405, No. 1, (2010), 451-455.
  • Receive Date: 23 February 2020
  • Revise Date: 22 April 2020
  • Accept Date: 23 April 2020
  • First Publish Date: 01 June 2020