Dielectric and Mechanical Properties of BZT-xBCT Piezoceramics Modified by Nano SiO2 Additive

Document Type : Original Research Article


Department of Materials Science and Engineering, Yasouj University, Yasouj, 75918-74934, Iran


Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 piezoceramics with nano SiO2 additive were prepared by conventional solid oxide sintering method. The samples were fabricated by means of cold isostatic pressing and sintering was performed at 1350 °C for 4 h in the air. The phase structure and microstructure were studied via X-ray diffraction technique and field emission scanning electron microscopy. The room-temperature dielectric properties and the variations in the temperature ranging from 23 to 160 °C were measured using a high-precision LCR meter. The mechanical properties such as Vickers hardness and compressive strength were investigated. The obtained results showed that nano SiO2 addition produced dense and uniform microstructures with larger grains than pure BCZT. The Curie temperature of undoped BCZT increased to about 25 °C through the incorporation of 0.75 mol% SiO2 and then, the mechanical properties considerably improved. Accordingly, BCZT piezoceramic with nano SiO2 additive enjoys viable properties, which makes it widely applicable.


Main Subjects

 1.      Koruza, J., Bell, A.J., Frömling, T., Webber, K.G., Wang, K., Rödel, J., “Requirements for the transfer of lead-free piezoceramics into application”, Journal of Materiomics, Vol. 4, No. 1, (2018), 13-26. DOI:10.1016/j.jmat.2018.02.001 
2.      Panda, P.K., Sahoo, B., “PZT to lead free piezo ceramics: a review”, Ferroelectrics, Vol. 474, No. 1, (2015), 128-143. DOI:10.1080/00150193.2015.997146
3.      Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., “An overview of lead-free piezoelectric materials and devices”, Journal of Materials Chemistry C, Vol. 6, No. 46, (2018), 12446-12467. DOI:10.1039/c8tc04515a
4.      Liu, W., Ren, X., “Large piezoelectric effect in Pb-free ceramics”, Physical review letters, Vol. 103, No. 25, (2009), 257602. DOI:10.1103/physrevlett.103.257602
5.      Brandt, D.R., Acosta, M., Koruza, J., Webber, K.G., “Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-x BCT piezoceramics”, Journal of Applied Physics, Vol. 115, No. 20, (2014), 204107. DOI:10.1063/1.4879395
6.      Zhang, Y., Glaum, J., Ehmke, M.C., Blendell, J.E., Bowman, K.J., Hoffman, M.J., “High bipolar fatigue resistance of BCTZ lead‐free piezoelectric ceramics”, Journal of the American Ceramic Society, Vol. 99, No. 1, (2016), 174-182. DOI:10.1111/jace.13927
7.      Hayati, R., Bahrevar, M.A., Ebadzadeh, T., Rojas, V., Novak, N., Koruza, J., “Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9) O3 lead-free piezoceramics”, Journal of the European Ceramic Society, Vol. 36, No. 14, (2016), 3391-3400. DOI:10.1016/j.jeurceramsoc.2016.05.033
8.      Hayati, R., Bahrevar, M.A., Ganjkhanlou, Y., Rojas, V., Koruza, J., “Electromechanical properties of Ce-doped (Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9) O 3 lead-free piezoceramics”, Journal of Advanced Ceramics, Vol. 8, No. 2, (2019), 186-195. DOI:10.1007/s40145-018-0304-2
9.      Hayati, R., Fayazi, M., Diargar, H., Kaveh, M., Tayebi, L., “Electrical and mechanical properties of BZT− x BCT lead‐free piezoceramics”, International Journal of Applied Ceramic Technology,  Vol. 17, No. 4,(2020), 1891-1898. DOI:10.1111/ijac.13494
10.    Takahashi, H., Nagata, H., Takenaka, T., “Mechanical bending strength of (Bi0. 5Na0. 5) TiO3-based lead-Free piezoelectric ceramics”, Journal of Asian Ceramic Societies, Vol. 5, No. 3,  (2017), 242-246. DOI:10.1016/j.jascer.2017.03.002
11.    Promsawat, M., Watcharapasorn, A., Jiansirisomboon, S., “Effects of ZnO nanoparticulate addition on the properties of PMNT ceramics”, Nanoscale research letters, Vol. 7, No. 1, (2012), 1-7. DOI:10.1186/1556-276x-7-65
12.    Promsawat, M., Watcharapasorn, A., Sreesattabud, T., Jiansirisomboon, S., “Effect of ZnO nano-particulates on structure and properties of PZT/ZnO ceramics”, Ferroelectrics, Vol. 382, No. 1, (2009), 166-172. DOI:10.1080/00150190902870226
13.    Nam, H.D., Lee, H.Y., “Electrical and mechanical properties of PZT ceramics”, Ferroelectrics, Vol. 186, No. 1, (1996), 309-312. DOI:10.1080/00150199608218090
14.    Miyoshi, T., Funakubo, H., “Effect of grain size on mechanical properties of full-dense Pb (Zr, Ti) O3 ceramics”, Japanese Journal of Applied Physics, Vol. 49, No. 9S, (2010), 09MD13. DOI:10.1143/jjap.49.09md13
15.    Tan, Z., Xie, S., Jiang, L., Xing, J., Chen, Y., Zhu, J., Xiao, D., Wang, Q., “Oxygen octahedron tilting, electrical properties and mechanical behaviors in alkali niobate-based lead-free piezoelectric ceramics”, Journal of Materiomics, Vol. 5, No. 3, (2019), 372-384. DOI:10.1016/j.jmat.2019.02.001
16.    Srinivas, A., Krishnaiah, R.V., Niranjani, V.L., Kamat, S.V., Karthik, T., Asthana, S., “Ferroelectric, piezoelectric and mechanical properties in lead free (0.5) Ba (Zr0. 2Ti0. 8) O3–(0.5)(Ba0. 7Ca0. 3) TiO3 electroceramics”, Ceramics International, Vol. 41, No. 2, (2015), 1980-1985. DOI:10.1016/j.ceramint.2014.08.127
17.    Coondoo, I., Panwar, N., Alikin, D., Bdikin, I., Islam, S.S., Turygin, A., Shur, V.Y., Kholkin, A.L., “A comparative study of structural and electrical properties in lead-free BCZT ceramics: influence of the synthesis method”, Acta Materialia, Vol. 155, (2018), 331-342. DOI:10.1016/j.actamat.2018.05.029
18.    Hao, J., Bai, W., Li, W., Zhai, J., “Correlation between the microstructure and electrical properties in high‐performance (Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9) O 3 lead‐free piezoelectric ceramics”, Journal of the American Ceramic Society, Vol. 95, No. 6, (2012), 1998-2006. DOI:10.1111/j.1551-2916.2012.05146.x
19.    Bai, Y., Matousek, A., Tofel, P., Bijalwan, V., Nan, B., Hughes, H., Button, T.W., “(Ba, Ca)(Zr, Ti) O3 lead-free piezoelectric ceramics—the critical role of processing on properties”, Journal of the European Ceramic Society, Vol. 35, No. 13, (2015), 3445-3456. DOI:10.1016/j.jeurceramsoc.2015.05.010
20.    Mittal, S., Chandramani Singh, K., “Size Effect of Nanoscale Powders on the Polarization of the BCZT Piezoceramic: A Pyroelectric and Fatigue Perspective”, Integrated Ferroelectrics, Vol. 205, No. 1, (2020), 122-130. DOI:10.1080/10584587.2019.1675008
21.    Xu, D., Wang, L., Li, W., Wang, W., Hou, Y., Cao, W., Feng, Y., Fei, W., “Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO 3 composite ceramics”, Physical Chemistry Chemical Physics, Vol. 16, No. 26, (2014), 13078-13085. DOI:10.1039/c4cp00796d
22.    Iyer, S., McIntosh, J., Bandyopadhyay, A., Langrana, N., Safari, A., Danforth, S.C., Clancy, R.B., Gasdaska, C., Whalen, P.J., “Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics”, International Journal of Applied Ceramic Technology, Vol. 5, No. 2, (2008), 127-137. DOI:10.1111/j.1744-7402.2008.02193.x
23.    Puchmark, C., Rujijanagul, G., Jiansirisomboon, S., Tunkasiri, T., Vittayakorn, N., Comyn, T., Milne, S.J., “Mechanical property evaluation of PZT/Al2O3 composites prepared by a simple solid-state mixed oxide method”, Current Applied Physics, Vol. 6, No. 3, (2006), 323-326. DOI:10.1016/j.cap.2005.11.010
24.    Zhu, Z.G., Li, B.S., Li, G.R., Yin, Q.R., “Effects of SiO2 substitution on piezoelectric and mechanical properties of PMS-PZT ternary piezoelectric ceramics”, In Key Engineering Materials, Vol. 280, (2005), 215-218. Trans Tech Publications Ltd. DOI:10.4028/www.scientific.net/kem.280-283.215
25.    Adhikari, P., Mazumder, R., Sahoo, G.K., “Electrical and mechanical properties of 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 (BZT–BCT) Lead free ferroelectric ceramics reinforced with nano-sized Al2O3”, Ferroelectrics, Vol. 490, No. 1, (2016), 60-69. DOI:10.1080/00150193.2015.1072013
26.    Hayati, R., Barzegar, A., “Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive”, Materials Science and Engineering: B, Vol. 172, No. 2, (2010), 121-126. DOI:10.1016/j.mseb.2010.04.033
27.    Rojas, V., Koruza, J., Patterson, E.A., Acosta, M., Jiang, X., Liu, N., Dietz, C., Rödel, J., “Influence of composition on the unipolar electric fatigue of Ba (Zr0. 2Ti0. 8) O3‐(Ba0. 7Ca0. 3) TiO3 lead‐free piezoceramics”, Journal of the American Ceramic Society, Vol. 100, No. 10, (2017), 4699-4709. DOI:10.1111/jace.15013
28.    Buatip, N., Dhanunjaya, M., Amonpattaratkit, P., Pomyai, P., Sonklin, T., Reichmann, K., Janphaung, P., Pojprapai, S., “Comparison of conventional and reactive sintering techniques for Lead–Free BCZT ferroelectric ceramics”, Radiation Physics and Chemistry, Vol. 172, (2020), 108770. DOI:10.1016/j.radphyschem.2020.108770
29.    Castro, R., Van Benthem, K. eds., “Sintering: mechanisms of convention nanodensification and field assisted processes”, Springer Science & Business Media, Vol. 35, (2012). DOI:10.1007/978-3-642-31009-6
30.    Lee, Y.C., Lin, C.W., Lu, W.H., Chen, W.J., Lee, W.H., “Influence of SiO2 addition on the dielectric properties and microstructure of (Ba0. 96Ca0. 04)(Ti0. 85Zr0. 15) O3 ceramics”, International Journal of Applied Ceramic Technology, Vol. 6, No. 6, (2009), 692-701. DOI:10.1111/j.1744-7402.2009.02379.x
31.    Chen, Y., Xie, S., Wang, Q., Fu, L., Nie, R., Zhu, J., “Correlation between microstructural evolutions and electrical/mechanical behaviors in Nb/Ce co-doped Pb (Zr0. 52Ti0. 48) O3 ceramics at different sintering temperatures”, Materials Research Bulletin, Vol. 94, (2017), 174-182. DOI:10.1016/j.materresbull.2017.05.045
32.    Yusong, P., Qianqian, S., Yan, C., “Fabrication and mechanical properties of Na0. 5Bi0. 5TiO3–BaTiO3 lead-free piezoelectric ceramics”, Ceramics–Silikáty, Vol. 58, No. 1, (2014), 50-55.
33.    Havaldar, R., Pilli, S.C., Putti, B.B., “Insights into the effects of tensile and compressive loadings on human femur bone”, Advanced biomedical research, Vol. 3, (2014). DOI:10.4103/2277-9175.129375
34.    Abdollahi, E., Bakhsheshi-Rad, H., “Evaluation of mechanical properties and apatite formation of synthesized fluorapatite-hardystonite nanocomposite scaffolds”, Advanced Ceramics Progress, Vol. 4, (2018), 8-15. DOI:10.30501/acp.2018.92930
35.    Arianpour, F., Golestani Fard, F., Rezaie, H., “Spark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite”, Advanced Ceramics Progress, Vol. 2, No. 1, (2016), 13-18. DOI:10.30501/acp.2016.70013
36.    Moshtaghioun, B.M., Gomez-Garcia, D., Dominguez-Rodriguez, A., Todd, R.I., “Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics”, Journal of the European Ceramic Society, Vol. 36, No. 7, (2016), 1829-1834. DOI:10.1016/j.jeurceramsoc.2016.01.017