Effect of Heat Treatment on Grain Growth of Magnetic Nanocrystalline Hydroxyapatite Powder

Document Type : Original Research Article


1 Department of Ceramic, Materials and Energy Research Center, Meshkindasht, Alborz, Iran

2 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

3 Department of Energy, Materials and Energy Research Center, Meshkindasht, Alborz, Iran


Nanocrystalline Magnetic Hydroxyapatite (MHAp) was synthesized through co-precipitation method and the subsequent heat treatment. Phase analysis, particle morphology, chemical bonding, and magnetic properties were studied using XRD, FESEM, FTIR, and VSM, respectively. The XRD results showed that MHAp was formed by heat treatment at 1100 °C. The samples heat-treated at 500 and 1100 °C incorporated a plate-like morphology with a mean crystallite size of 11.7 and 59.9 nm, respectively. In addition, the VSM results indicated that the synthesized MHAp was characterized by magnetic features after heat treatment. According to the findings in this study, the coercive field (Hc), saturation magnetization (Ms), and magnetism stayed (Mr) were 0.175 kOe, 0.00147, and 0.02615 emug-1, respectively, in -10 to 10 kOe  magnetic field. The growth kinetics of the MHAp was alo studied. According to the results, the growth activation energies for low and high temperatures were 45.51 and 67.33 kJ/mol, respectively. Owing to several properties already proven, the MHAp powder was successfully synthesized.


Main Subjects

1.     Thanh, D. N., Novák, P., Vejpravova, J., Vu, H. N., Lederer, J., Munshi, T., “Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods”, Journal of Magnetism and Magnetic Materials, Vol. 456, (2018), 451-460. https://doi.org/10.1016/j.jmmm.2017.11.064
2.     Ramdani, A., Kadeche, A., Adjdir, M., Taleb, Z., Ikhou, D., Taleb, S., Deratani, A., “Lead and cadmium removal by adsorption process using hydroxyapatite porous materials”, Water Practice & Technology, Vol. 15, No. 1, (2020), 130-141. https://doi.org/10.2166/wpt.2020.003
3.     Wang, Y., Hu, L., Zhang, G., Yan, T., Yan, L., Wei, Q., Du, B., “Removal of Pb (II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes”, Journal of Colloid and Interface Science, Vol 494, (2017), 380-388. https://doi.org/10.1016/j.jcis.2017.01.105
4.     Vahdat, A., Ghasemi, B., Yousefpour, M., “Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals”, Environmental Nanotechnology, Monitoring & Management, Vol 12, (2019), 100233-100238. https://doi.org/10.1016/j.enmm.2019.100233
5.     Venkatesan, S., ul Hassan, M., Ryu, H. J., “Adsorption and immobilization of radioactive ionic-corrosion-products using magnetic hydroxyapatite and cold-sintering for nuclear waste management applications”, Journal of Nuclear Materials, Vol 514, (2019), 40-49. https://doi.org/10.1016/j.jnucmat.2018.11.026
6.     Mondal, S., Manivasagan, P., Bharathiraja, S., Moorthy, M. S., Kim, H. H., Seo, H., Lee, K. D., Oh, J., “Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application”, International Journal of Nanomedicine, Vol 12, (2017), 8389-8393. https://doi.org/10.2147/ijn.s147355
7.     Zilm, M. E., Chen, L., Sharma, V., McDannald, A., Jain, M., Ramprasad, R., Wei, M., “Hydroxyapatite substituted by transition metals: experiment and theory”, Physical Chemistry Chemical Physics, Vol 18, No. 24, (2016), 16457-16465. https://doi.org/10.1039/c6cp00474a
8.     Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S. M., Amiri, M., Salavati-Niasari, M., “Mesopourous Fe3O4@ SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity”, Journal of Hazardous Materials, Vol. 400, (2020), 123140. https://doi.org/10.1016/j.jhazmat.2020.123140
9.     Katundi, D., Bayraktar, E., Gatamorta, F., Miskioglu, I., “Design of Hydroxyapatite/Magnetite (HAp/Fe3O4) Based Composites Reinforced with ZnO and MgO for Biomedical Applications”, BiomedIcal Journal of Scientific & Technical Research, Vol 21, No. 4, (2019), 16113. https://doi.org/10.26717/bjstr.2019.21.003649
10.   Zeng, D., Dai, Y., Zhang, Z., Wang, Y., Cao, X., Liu, Y., “Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite”, Journal of Radioanalytical and Nuclear Chemistry, Vol. 324, No. 3, (2020), 1329-1337. https://doi.org/10.1007/s10967-020-07148-y
11.   Ain, Q. U., Zhang, H., Yaseen, M., Rasheed, U., Liu, K., Subhan, S., Tong, Z., “Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb (II), Cd (II), and crystal violet from aqueous solution”, Journal of Cleaner Production, Vol 247, (2020), 119088. https://doi.org/10.1016/j.jclepro.2019.119088
12.   Das, K. C., Dhar, S. S., “Remarkable catalytic degradation of malachite green by zinc supported on hydroxyapatite encapsulated magnesium ferrite (Zn/HAP/MgFe2O4) magnetic novel nanocomposite”, Journal of Materials Science, Vol 55, No. 11, (2020), 4592-4606. https://doi.org/10.1007/s10853-019-04294-x
13.   Das, K. C., Das, B., Dhar, S. S., “Effective Catalytic Degradation of Organic Dyes by Nickel Supported on Hydroxyapatite-Encapsulated Cobalt Ferrite (Ni/HAP/CoFe2O4) Magnetic Novel Nanocomposite”, Water, Air, & Soil Pollution, Vol. 231, No. 2, (2020), 43. https://doi.org/10.1007/s11270-020-4409-1
14.   Attia, M. A., Moussa, S. I., Sheha, R. R., Someda, H. H., Saad, E. A., “Hydroxyapatite/NiFe2O4 superparamagnetic composite: Facile synthesis and adsorption of rare elements”, Applied Radiation and Isotopes, Vol. 145, (2019), 85-94. https://doi.org/10.1016/j.apradiso.2018.12.003
15.   Seyfoori, A., Ebrahimi, S. S., Omidian, S., Naghib, S. M., “Multifunctional magnetic ZnFe2O4-hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: an in vitro study”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 96, (2019), 503-508. https://doi.org/10.1016/j.jtice.2018.10.018
16.   Elkady, M., Shokry, H., Hamad, H., “Microwave‐Assisted Synthesis of Magnetic Hydroxyapatite for Removal of Heavy Metals from Groundwater”, Chemical Engineering & Technology, Vol. 41, No. 3, (2018), 553-562. https://doi.org/10.1002/ceat.201600631
17.   Sneha, M., Sundaram, N. M., “Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy”, International Journal of Nanomedicine, Vol 10, (2015), 99-105. https://doi.org/10.2147/ijn.s79985
18.   Periyasamy, S., Gopalakannan, V., Viswanathan, N., “Hydrothermal assisted magnetic nano-hydroxyapatite encapsulated alginate beads for efficient Cr (VI) uptake from water”, Journal of Environmental Chemical Engineering, Vol. 6, No. 1, (2018), 1443-1454. https://doi.org/10.1016/j.jece.2018.01.007
19.   Cullity, B. D., Elements of X-ray Diffraction, 2nd Ed., edited by Morris Cohen, Addison-Wesley Publishing, (1977).
20.   Younesi, M., Javadpour, S., Bahrololoom, M. E., “Effect of Heat Treatment Temperature on Chemical Compositions of Extracted Hydroxyapatite from Bovine Bone Ash”, Journal of Materials Engineering and Performance, Vol 20, No. 8, (2011) 1484-1490. https://doi.org/10.1007/s11665-010-9785-z
21.   Xia, X., Chen, J., Shen, J., Huang, D., Duan, P., Zou, G., “Synthesis of hollow structural hydroxyapatite with different morphologies using calcium carbonate as hard template”, Advanced Powder Technology, Vol 29, No. 7, (2018), 1562-1570. https://doi.org/10.1016/j.apt.2018.03.021
22.   Hamad, H. A., Abd El-latif, M. M., Kashyout, A. B., Sadik, W.A., Feteha, M.Y., “Study on synthesis of superparamagnetic spinel cobalt ferrite nanoparticles as layered double hydroxides by co-precipitation method”, Russian Journal of General Chemistry,Vol. 84, No. 10, (2014), 2031–2036. https://doi.org/10.1134/s1070363214100296
23.   Sneha, M., Sundaram, N. M., “Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy”, International Journal of Nanomedicine, Vol 10, (2015), 99-106. https://doi.org/10.2147/ijn.s79985
24.   Tien C., Adsorption Calculations and Modeling, Butterworth-Heinemann publisher: Boston, (1994). https://doi.org/10.1016/c2009-0-26911-x
25.   Atkinson, H. V., “Overview no. 65: Theories of normal grain growth in pure single phase systems”, Acta Metallurgica, Vol. 36, No. 3, (1988), 469-491. https://doi.org/10.1016/0001-6160(88)90079-x
26.   Mobasherpour, I., Salahi, E., Manafi, S. A., Kamachali, R. D., “Effect of heat-treatment on grain growth of nanocrystalline tricalcium phosphate powder synthesized via the precipitation method”, Materials Science-Poland, Vol. 29, No. 3, (2011), 203-208. https://doi.org/10.2478/s13536-011-0032-6
27.   Liu, F., Kirchheim, R., “Comparison between kinetic and thermodynamic effects on grain growth”, Thin Solid Films, Vol 466, No. 1-2, (2004), 108-113. https://doi.org/10.1016/j.tsf.2004.03.018
28.   Höfler, H. J., Tao, R., Kim, L., Averback, R. S., Altstetter, C. J., “Mechanical properties of single-phase and nano-composite metals and ceramics”, Nanostructured Materials, Vol. 6, No. 5-8, (1995), 901-904. https://doi.org/10.1016/0965-9773(95)00205-7
29.   Liu, F., Kirchheim, R., “Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregration”, Journal of Crystal Growth, Vol 264, No. 1-3, (2004), 385-391. https://doi.org/10.1016/j.jcrysgro.2003.12.021
30.   Mobasherpour, I. Salahi, E., “Effect of heat treatment on grain growth of nanocrystalline hydroxyapatite powder”, Journal of Ceramic Science and Technology, Vol 2, No. 2, (2011), 119-124. https://doi.org/10.4416/JCST2010-00046