Lithium Substitution Glass Composition Used in Glass Ionomer Cement: Physiochemical Properties in Artificial Saliva

Document Type : Original Research Article


1 Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, Meshkindasht, Alborz, Iran

2 Department of Ceramic, Materials and Energy Research Center, Meshkindasht, Alborz, Iran


In this study, glasses with 41.6 SiO2, 28.5 Al2O3, 15.5 CaF2, 3.7 AlPO4, 1.5 AlF3, (9.2-X) NaF, and X LiF (X= 0, 3, 6, and 9.2) compositions were prepared. Fourier Transform Infrared Spectroscopy (FTIR) showed the red shift of Si-O-Si vibration mode by Lithium substitutions. According to the results of Differential Thermal Analysis (DTA), ΔTg = 60 ºC was proved by the lithium substitution. Field Emission Scanning Electron Microscopy (FESEM), antibacterial property, glass solubility in Artificial Saliva (AS), and pH variation in AS by dissolution were measured. Following the initial substitution of lithium, the glass density was reduced from 2.62 to 2.40 g/cm3, whereas in the 6 wt. % Li concentration, the high field strength played the main role and the density increased from 2.40 to 2.58 g/cm3. In artificial saliva with basic pH, the durability of Li bearing glasses increased and the degradation rate decreased. Durability decreased in the acidic environment. By increasing the Li substitution, the antimicrobial property of the cement was enhanced.


Main Subjects

1.     Forss, H., Widström, E., “Reasons for Restorative Therapy and Longevity of Restorations in Adults”, Acta Odontologica Scandinavica, Vol. 62, No. 2, (2004), 82-86.
2.     Selwitz, R. H., Ismail, A. I., Pitts, N. B., “Dental Caries”,. The Lancet, Vol. 369, No. 9555, (2007), 51-59.
3.     Hengtrakool, C., Pearson, G. J., Wilson, M., “Interaction Between GIC and S. Sanguis Biofilms: Antibacterial Properties and Changes of Surface Hardness”, Journal of Dentistry, Vol. 34, No. 8, (2006), 588-597.
4.     Kidd, E. A. M., Fejerskov, O., “What Constitutes Dental Caries? Histopathology of Carious Enamel and Dentin Related to the Action of Cariogenic Biofilms”, Journal of Dentistry Research, Vol. 83, No. 1_suppl, (2004), 35-38.
5.     Van Houte, J., Lopman, J., Kent, R., “The Predominant Cultivable Flora of Sound and Carious Human Root Surfaces”, Journal of Dental Research, Vol .73, No. 11, (1994), 1727-1734.
6.     Caufield, P. W., Li, Y., Dasanayake, A., “Dental caries: an infectious and transmissible disease”, Compendium of Continuing Education in Dentistry (Jamesburg, NJ: 1995), Vol. 26, No. 5 Suppl 1 ,(2005), 10-16. PMID: 17036539.
7.     Yip, K., Smales, R., “Oral diagnosis and treatment planning: part 2. Dental caries and assessment of risk”, British Dental Journal, Vol. 213, No. 2, (2012), 59-66. 10.1038/sj.bdj.2012.615.
8.     Zamanian, A., Yasaei, M., Ghaffari, M., Mozafari, M., “Calcium hydroxide-modified zinc polycarboxylate dental cements”, Ceramics International, Vol. 39, No. 8, (2013), 9525–9532.
9.     Yasaei, M., Zamanian, A., Moztarzadeh, F., Ghaffari, M., Mozafari, M., “Characteristics improvement of calcium hydroxide dental cement by hydroxyapatite nanoparticles. Part 1: formulation and microstructure”, Biotechnology and Applied Biochemistry, Vol. 60, No. 5, (2013), 502-509. 10.1002/bab.1119PMID: 23586755
10.   Farrugia, C., Camilleri, J., “Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review”, Dental Materials; Vol. 31, No. 4. (2015), e89-e99.
11.   Zamanian, A., Moztarzadeh, F., Kordestani, S., Hesaraki, S., Tahriri, M. R., “Novel calcium hydroxide/nanohydroxyapatite composites for dental applications: In vitro study”, Advances in Applied Ceramics, Vol. 109, No. 7, (2010), 440-444.
12.   Wilson, A. D., Kent, B. E., “The glass-ionomer cement, a new translucent cement dental filling material”, Journal of Applied Chemistry and Biotechnology, Vol. 21, No. 11, (1971), 313.
13.   Moshaverinia, A., Roohpour, N., Chee, W. W., Schricker, S. R., “A review of powder modifications in conventional glass-ionomer dental cements”, Journal of Materials Chemistry, Vol. 21, No. 5, (2011), 1319-1328.
14.   Agha, A., Parker, S., Patel, M. P., “Development of Experimental Resin Modified Glass Ionomer Cements (RMGICs) with Reduced Water uptake and Dimensional Change”, Dental Materials, Vol. 32, No. 6, (2016), 713-722.
15.   Weidlich, P., Miranda, L. A., Maltz, M., Samuel, S. M., “Fluoride release and uptake from glass ionomer cements and composite resins”, Brazilian Dental Journal, Vol. 11, No. 2, (2000), 89-96.
16.   Vermeersch, G., Leloup, G., Vreven, J., “Fluoride release from glass-ionomer cements, compomers and resin composites”, Journal of Oral Rehabilitation, Vol. 28, No. 1, (2001), 26-32.
17.   Manhart, J., Garcı́a-Godoy, F., Hickel, R., “Direct posterior restorations: Clinical results and new developments”, Dental Clinics of North America, Vol. 46, No. 2, (2002), 303-339.
18.   Randall, R. C., Wilson, N. H. F., “Glass-ionomer restoratives: A systematic review of a secondary caries treatment effect”, Journal of Dental Research, Vol. 78, No. 2, (1999), 628-637.
19.   Hu , J., Du, X., Huang, C., Fu, D., Ouyang, X., Wang, Y., “Antibacterial and physical properties of EGCG-containing glass ionomer cements”, Journal of Dentistry, Vol. 41, No. 10, (2013), 927-934.
20.   Xie, D., Weng, Y., Guo, X., Zhao, J., Gregory, R. L., Zheng, C., “Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions”, Dental Materials, Vol. 27, No .5, (2011), 487-496. 10.1016/
21.   Somani, R., Jaidka, S., Jawa, D., Mishra, S., “Comparative evaluation of microleakage in conventional glass ionomer cements and triclosan incorporated glass ionomer cements”, Contemporary Clinical Dentistry, Vol. 5, No. 1, (2014), 85-88.
22.   Shaiksha Vali, K., Murugan, B. S., Reddy, S. K., Noroozinejad Farsangi, E., “Eco-friendly Hybrid Concrete Using Pozzolanic Binder and Glass Fibers” , International Journal of Engineering, Vol. 33, No. 7, (2020), 1183-1191.
23.   Rasti; M., Hesaraki; S., Nezafati, N., “An investigation on injectable composites fabricated by 45S5 bioactive glass and gum tragacanth: Rheological properties and in vitro behavior” , Advanced Ceramic Progress, Vol. 4, No. 2, (2018), 16-26.
24.   Mosbahi, S., Oudadesse, H., Wers, E., Trigui, M., Lefeuvre, B., Roiland, C., Elfeki, H., Elfeki, A., Rebai, T., Keskes, H., “Study of bioactive glass ceramic for use as bone biomaterial in vivo: Investigation by nuclear magnetic resonance and histology”, Ceramics International, Vol. 42, No. 4, (2016), 4827-4836.
25.   Huang, X., Yang, T., Zhao, S., Huang, C., Du, X., “Anti-biofilm effect of glass ionomer cements incorporated with chlorhexidine and bioactive glass”, Journal of Wuhan University of Technology-Materials Science Edition., Vol. 27, No. 2, (2012), 270–275.
26.   Elsaka, S. E., Hamouda, I. M., Swain, M. V., “Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties”, Journal of Dentistry, Vol. 39, No. 9, (2011), 589-598.
27.   Lieb, J., “Lithium and antidepressants: stimulating immune function and preventing and reversing infection”, Medical Hypotheses, Vol. 69, No. 1, (2007), 10-11.
28.   Kavitha, R. J., Subha, B., Shanmugam, S., Ravichandran, K., “Synthesis and Invitro Characterisation of Lithium Doped Bioactive Glass through Quick Alkali Sol-Gel Method”, (IJIRSE) International Journal of Innovative Research in Science & Engineering, Vol. 2, (2014), 2347-3207.
29.   Wang, J., de Boer, J., de Groot, K., “Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings”, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 90, No. 3, (2009), 664-670.
30.   Hesaraki, S., Gholami, M., Vazehrad, S., Shahrabi, S., “The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system”, Materials Science and Engineering: C, Vol. 30, No. 3, (2010),383-390.
31.   Akashi, A., Matsuya, Y., Unemori, M ., Akamine, A., “The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage”, Biomaterials, Vol. 20, No. 17 , (1999), 1573-1578.
32.   Hanting, C., Hanxing, L., Guoqing, Z., “The setting chemistry of glass ionomer cemen”, Journal of Wuhan University of Technology- Materials Science Edition, Vol. 20, No. 4, (2005), 110–112.
33.   Kaur, M., Singh, S. P., Mudahar, D. S., Mudahar, G. S., “Structural B2O3-Li2CO3-Al2O3 Glasses By Molar Volume Measurements and FTIR Spectroscopy”, Materials Physics and Mechanics, Vol. 15, (2012), 66-73.
34.   Sayyedan, F. S., Fathi, M., Edris, H., Doostmohammadi, A., Mortazavi, V., Shirani, F., “Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite”, Dental Research Journal, Vol. 10, No. 4, (2013), 452-459.
Volume 6, Issue 4 - Serial Number 22
December 2020
Pages 28-36
  • Receive Date: 11 August 2020
  • Revise Date: 07 September 2020
  • Accept Date: 04 October 2020
  • First Publish Date: 01 December 2020