Structual, Magnetic, and Transport Properties of LaMn1-xCuxO3 (x= 0-0.125) Ceramics

Document Type : Original Research Article

Authors

1 Department of Physics, Isfahan University of Technology, Isfahan, Isfahan, Iran

2 Department of Physics, Semnan University, Semnan, Semnan, Iran

3 Department of Physics, University of Tabriz, Tabriz, East Azerbaijan, Iran

Abstract

The present study investigates the structural, magnetic, and electrical properties of non-stoichiometric  LaMn1-xCuxO3 (x= 0, 0.025, 0.05, 0.075, and 0.125) ceramics. The results of X-ray diffraction refinement indicated that all samples were crystallized in an orthorhombic structure and no apparent crystal structure change was introduced by doping Cu up to x=0.125. The Ferromagnetic (FM) nature revealed by non-stoichiometric LaMn1-xCuxO3-d was verified through the appearance of Paramagnetic-Ferromagnetic (PM-FM) transition temperatures in AC magnetic susceptibility measurement of the samples. Due to the coexistence of Antiferromagnetic (AFM) and FM phases, all samples contained Re-entrant Spin Glass (RSG) and Cluster Spin Glass (CSG) states. The results showed that FM phase was comparable or even dominant in the doped samples up to x=0.075; however, after doping, AFM phase overcame the FM phase as a result of reduction of double exchange interaction. Temperature dependence of resistivity measurement indicated that upon increasing the Cu-doping level, resistivity decreased, except for the x=0.125 sample, and that metal-insulator transition at low temperatures was detected in the doped samples. Furthermore, changing the magnetic phase in the case of x=0.125 sample from FM (in x=0.075) to AFM dominant phase was accompanied by changing the transport parameters obtained from small polaron hopping models.

Highlights

Google Scholar

Keywords

Main Subjects


1.     Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., Chen, L. H., “Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films”, Science, Vol. 264, No. 5157, (1994), 413-415. https://doi.org/10.1126/science.264.5157.413
2.     Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T., Tokura, Y., “A structural phase transition induced by an external magnetic field”, Nature, Vol. 373, No. 6513, (1995), 407-409. https://doi.org/ 10.1038/373407a0
3.     Tokura, Y., Ed., Colossal Magnetoresistive Oxides, CRC Press, (2000). https://doi.org/10.1201/9781482287493
4.     Töpfer, J., Goodenough, J. B., “Transport and Magnetic Properties of the Perovskites La1-y MnO3 and LaMn1-z O3”, Chemistry of Materials,Vol. 9, No. 6, (1997), 1467-1474. https://doi.org/10.1021/cm9700211
5.     Chandra, S., Biswas, A., Datta, S., Ghosh, B., Siruguri, V., Raychaudhuri, A. K., Phan, M. H., Srikanth, H., “Evidence of a canted magnetic state in self-doped LaMnO3+ δ (δ= 0.04): a magnetocaloric study”, Journal of Physics: Condensed Matter,Vol. 24, No. 36, (2012), 366004. https://doi.org/10.1088/0953-8984/24/36/366004
6.     Zener, C., “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure”, Physical Review, Vol. 82, No. 3, (1951), 403. https://doi.org/10.1103/PhysRev.82.403
7.     Anderson, P. W., Hasegawa, H., “Considerations on double exchange”, Physical Review,Vol. 100, No. 2, (1955), 675. https://doi.org/10.1103/PhysRev.100.675
8.     De Gennes, P. G., “Effects of double exchange in magnetic crystals”, Physical Review,Vol. 118, No. 1, (1960), 141. https://doi.org/10.1103/PhysRev.118.141
9.     Malavasi, L., Mozzati, M. C., Azzoni, C. B., Chiodelli, G., Flor, G., “Role of oxygen content on the transport and magnetic properties of La1− xCaxMnO3+ δ manganites”, Solid State communications,Vol. 123, No. 8, (2002), 321-326. https://doi.org/10.1016/S0038-1098(02)00376-9
10.   Maguire, E. T., Coats, A. M., Skakle, J. M., West, A. R., “Stoichiometry and defect structure of ‘NdMnO3”, Journal of Materials Chemistry,Vol. 9, No. 6, (1999), 1337-1346. https://doi.org/10.1039/a900734b
11.   Dagotto, E., “Phase Diagrams and Basic Properties of Manganites”, In Nanoscale Phase Separation and Colossal Magnetoresistance, Springer Series in Solid-State Sciences, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05244-0_3
12.   Wollan, E. O., Koehler, W. C., “Neutron diffraction study of the magnetic properties of the series of perovskite-type Compounds [(1− x) La, x Ca] Mn O 3”, Physical Review, Vol. 100, No. 2, (1955), 545. https://doi.org/10.1103/PhysRev.100.545
13.   Kagan, M. Y., Klaptsov, A. V., Brodsky, I. V., Kugel, K. I., Sboychakov, A. O., Rakhmanov, A. L., “Nanoscale phase separation in manganites”, Journal of Physics A: Mathematical and General, Vol. 36, No. 35, (2003), 9155. https://doi.org/10.1088/0305-4470/36/35/304
14.   Hwang, H. Y., Cheong, S. W., Radaelli, P. G., “Lattice Effects on the Magnetoresistance in Doped LaMnO3”, Physical Review Letters,Vol. 75, No. 5, (1995), 914. https://doi.org/10.1103/PhysRevLett.75.914
15.   Zarifi, M., Kameli, P., Ehsani, M. H., Ahmadvand, H., Salamati, H., “Effects of rare earth ions substitution on the magnetocaloric and critical behavior of La0.6A0.2Sr0.2MnO3 (A= Pr, Nd, Ce) manganite”, Journal of Alloys and Compounds, Vol. 718, (2017), 443-452. https://doi.org/10.1016/j.jallcom.2017.05.196
16.   Arabi, A., Fazli, M., Ehsani, M. H., “Tuning the morphology and photocatalytic activity of La0.7Ca0.3MnO3 nanorods via different mineralizer-assisted hydrothermal syntheses”, Materials Research Bulletin, Vol. 90, (2017), 205-211. https://doi.org/10.1016/j.materresbull.2017.02.043
17.   Zarifi, M., Kameli, P., Ehsani, M. H., Ahmadvand, H., Salamati, H., “Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films”, Journal of Magnetism and Magnetic Materials, Vol. 420, (2016), 33-38. https://doi.org/10.1016/j.jmmm.2016.06.081
18.   Ehsani, M. H., Raoufi, T., Razavi, F. S., “Impact of Gd ion substitution on the magneto-caloric effect of                        La0.6-xGdxSr0.4MnO3 (x= 0, 0.0125, 0.05, 0.10) manganites”, Journal of Magnetism and Magnetic Materials,Vol. 475, (2019), 484-492. https://doi.org/10.1016/j.jmmm.2018.11.131
19.   Ehsani, M. H., Raoufi, T., “Effect of Gd substitution on the critical scaling of the ferromagnetic transition of La0.6-xGdxSr0.4MnO3 (x= 0, 0.05, 0.1) manganite”, Journal of Alloys and Compounds,Vol. 769, (2018), 649-659. https://doi.org/10.1016/j.jallcom.2018.08.022
20.   Esmaeili, S., Ehsani, M. H., Fazli, M., “Photo-catalytic activities of La0.7Ba0.3MnO3 nanoparticles”, Optik, Vol. 216, (2020), 164812. https://doi.org/10.1016/j.ijleo.2020.164812
21.   Esmaeili, S., Ehsani, M. H., Fazli, M., “Structural, optical and photocatalytic properties of La0.7Ba0.3MnO3 nanoparticles prepared by microwave method”, Chemical Physics,Vol. 529, (2020), 110576. https://doi.org/10.1016/j.chemphys.2019.110576
22.   De Lima, O. F., Coaquira, J. A. H., De Almeida, R. L., De Carvalho, L. B., Malik, S. K., “Magnetic phase evolution in the LaMn1−xFexO3+y system”, Journal of Applied Physics,Vol. 105, No. 1, (2009), 013907. https://doi.org/10.1063/1.3054323
23.   Sun, Y., Tong, W., Xu, X., Zhang, Y., “’Possible double-exchange interaction between manganese and chromium in LaMn1−xCrxO3”, Physical Review B,Vol. 63, No. 17, (2001), 174438. https://doi.org/10.1103/PhysRevB.63.174438
24.   Ramos, A. Y., Tolentino, H. C., Soares, M. M., Grenier, S., Bunău, O., Joly, Y., Baudelet, F., Wilhelm, F., Rogalev, A., Souza, R. A., Souza-Neto, N. M., “Emergence of ferromagnetism and Jahn-Teller distortion in LaMn1−xCrxO3 (x<0.15)”, Physical Review B,Vol. 87, No. 22, (2013), 220404. https://doi.org/10.1103/PhysRevB.87.220404
25.   Gong, F., Tong, W., Tan, S., Zhang, Y., “Large effect of small Zn doping on the electric and magnetic properties in LaMn1−xZnxO3”, Physical Review B,Vol. 68, No. 17, (2003), 174410. https://doi.org/10.1103/PhysRevB.68.174410
26.   Hu, L., Tong, W., Zhu, H., Zhang, Y., “The effects of Jahn–Teller distortion changes on transport properties in LaMn1−xZnxO3”, Journal of Physics: Condensed Matter,Vol. 15, No. 12, (2003), 2033. https://doi.org/10.1088/0953-8984/15/12/320 27.   Sahana, M., Venimadhav, A., Hegde, M. S., Nenkov, K., Rößler, U. K., Dörr, K., Müller, K. H., “Magnetic properties and specific heat of LaMn1−xTixO3+δ (0< x≤ 0.2)”, Journal of Magnetism and Magnetic Materials, Vol. 260, No. 3, (2003), 361-370. https://doi.org/10.1016/S0304-8853(02)01341-0
28.   Hébert, S., Martin, C., Maignan, A., Retoux, R., Hervieu, M., Nguyen, N., Raveau, B., “Induced ferromagnetism in LaMnO 3 by Mn-site substitution: The major role of Mn mixed valency”, Physical Review B,Vol. 65, No. 10, (2002), 104420. https://doi.org/10.1103/PhysRevB.65.104420
29.   Sun, Y., Xu, X., Tong, W., Zhang, Y., “Double-exchange ferromagnetism and magnetoresistance in LaMn1−xCuxO3 (x≤0.3)”, Applied Physics Letters, Vol. 77, No. 17, (2000), 2734-2736. https://doi.org/10.1063/1.1320021
30.   Michel, C., “Structural, electro-magnetic and catalytic characterisation of the LaMn1-xCuxO3-δ system”, Journal of Material Chemistry,Vol. 8, No. 8, (1998), 1815-1819. https://doi.org/10.1039/a801503a
31.   Eshraghi, M., Kameli, P., Khalili, F., Ehsani, M. H., Salamati, H., “Structural, magnetic and electrical characterization of the La0.7Ca0.3Co1–xMnxO3 (x= 0, 0.7 and 1) compounds prepared by a simple method”, Journal of Rare Earths,Vol. 32, No. 10, (2014), 965-972. https://doi.org/10.1016/s1002-0721(14)60170-8
32.   Amirzadeh, P., Ahmadvand, H., Kameli, P., Aslibeiki, B., Salamati, H., Gamzatov, A. G., Aliev, A. M., Kamilov, I. K., “Phase separation and direct magnetocaloric effect in La0.5Ca0.5MnO3 manganite”, Journal of Applied Physics, Vol. 113, No. 12, (2013), 123904. https://doi.org/10.1063/1.4794179
33.   Joy, P. A., Sankar, C. R., Date, S. K., “The origin of ferromagnetism in LaMnO3+δ”, Journal of Physics: Condensed Matter,Vol. 14, No. 19, (2002), 4985. https://doi.org/10.1088/0953-8984/14/19/320
34.   Zhang, H., Shi, J., Li, Y., Liu, H., Dong, X., Chen, K., Hou, Q., Huang, Y., Ge, X., Zhao, L., Lu, Z., “Local Atomic and Electronic Structure with Magnetism of La0.7Ca0.3Mn1−xCuxO3 (x= 0, 0.03, 0.06, 0.1)”, Journal of Low Temperature Physics, Vol. 169, No. 1-2, (2012), 77-89. https://doi.org/10.1007/s10909-012-0644-1
35.   Shannon, R. D., “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides”, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography,Vol. 32, No. 5, (1976), 751-767. https://doi.org/10.1107/s0567739476001551
36.   Yuan, S. L., Jiang, Y., Li, G., Li, J. Q., Yang, Y. P., Zeng, X. Y., Tang, P., Huang, Z., “Semiconductor-metal transition and magnetoresistance in La(1+x)/3Ba(2−x)/3Cu1−xMnxO3”, Physical Review B, Vol. 61, No. 5, (2000), 3211. https://doi.org/10.1103/physrevb.61.3211
37.   Kim, M. S., Yang, J. B., Medvedeva, J., Yelon, W. B., Parris, P. E., James, W. J., “Electronic structure of La0.7Sr0.3Mn1−xCuxO3 (0.0≤ x≤ 0.30)”, Journal of Physics: Condensed Matter,Vol. 20, No. 25, (2008), 255228. https://doi.org/10.1088/0953-8984/20/25/255228
38.   Töpfer, J., Goodenough, J. B., “LaMnO3+δ Revisited”, Journal of Solid State Chemistry,Vol. 130, No. 1, (1997), 117-128. https://doi.org/10.1006/jssc.1997.7287
39.   Aslibeiki, B., Kameli, P., Salamati, H., “Reentrant spin glass behavior in La0.8Sr0.2Mn1−xTixO3 manganites”, Solid State Communications,Vol. 149, No. 31-32, (2009), 1274-1277. https://doi.org/10.1016/j.ssc.2009.05.012
40.   Pękała, M., Mucha, J., Vertruyen, B., Cloots, R., Ausloos, M., “Effect of Ga doping on magneto-transport properties in colossal magnetoresistive La0.7Ca0.3Mn1−xGaxO3 (0< x< 0.1)”, Journal of Magnetism and Magnetic Materials,Vol. 306, No. 2, (2006), 181-190. https://doi.org/10.1016/j.jmmm.2006.02.241
41.   Dho, J., Kim, W. S., Hur, N. H., “Reentrant spin glass behavior in Cr-doped perovskite manganite”, Physical Review Letters,Vol. 89, No. 2, (2002), 027202. https://doi.org/10.1103/physrevlett.89.027202
42.   Srivastava, S. K., Kar, M., Ravi, S., “Ferromagnetic insulating and spin glass behavior in Cr substituted La0.85Ag0.15MnO3 compounds”, Journal of Physics: Condensed Matter, Vol. 20, No. 23, (2008), 235201. https://doi.org/10.1088/0953-8984/20/23/235201
43.   Viswanathan, M., Kumar, P. A., “Observation of reentrant spin glass behavior in LaCo0.5Ni0.5O3”, Physical Review B, Vol. 80, No. 1, (2009), 012410. https://doi.org/10.1103/physrevb.80.012410
44.   Mydosh, J. A., Spin Glasses: An Experimental Introduction, Taylor and Francis, (1993). https://doi.org/10.1201/9781482295191
45.   Pi, L., Zheng, L., Zhang, Y., “Transport mechanism in polycrystalline La0.825Sr0.175Mn1−xCuxO3”, Physical Review B, Vol. 61, No. 13, (2000), 8917. https://doi.org/10.1103/physrevb.61.8917
46.   Banerjee, A., Pal, S., Chaudhuri, B. K., “Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1−xCrxO3”, The Journal of Chemical Physics,Vol. 115, No. 3, (2001), 1550-1558. https://doi.org/10.1063/1.1378018
47.   Mott, N. F., “Conduction in glasses containing transition metal ions”, Journal of Non-Crystalline Solids, Vol. 1, No. 1, (1968), 1-17. https://doi.org/10.1016/0022-3093(68)90002-1
48.   Ravi, S., Kar, M., “Study of magneto-resistivity in La1−xAgxMnO3 compounds”, Physica B: Condensed Matter,Vol. 348, No. 1-4, (2004), 169-176. https://doi.org/10.1016/j.physb.2003.11.087
49.   Emin, D., Holstein, T., “Studies of small-polaron motion IV. Adiabatic theory of the Hall effect”, Annals of Physics,Vol. 53, No. 3, (1969), 439-520. https://doi.org/10.1016/0003-4916(69)90034-7
50.   Holstein, T., “Theory of transport phenomena in an electron-phonon gas”, Annals of Physics,Vol. 29, No. 3, (1964), 410-535. https://doi.org/10.1016/0003-4916(64)90008-9
51.   Mollah, S., Khan, Z. A., Shukla, D. K., Arshad, M., Kumar, R., Das, A., “Adiabatic small polaron-hopping conduction in Ln0.85Ca0.15MnO3 (Ln= Nd, Pr and Sm) perovskites”, Journal of Physics and Chemistry of Solids,Vol. 69, No. 4, (2008), 1023-1028. https://doi.org/10.1016/j.jpcs.2007.11.024
52.   Ehsani, M. H., Kameli, P., Ghazi, M. E., “Influence of grain size on the electrical properties of the double-layered LaSr2Mn2O7 manganite”, Journal of Physics and Chemistry of Solids,Vol. 73, No. 6, (2012), 744-750. https://doi.org/10.1016/j.jpcs.2012.01.020
53.   Mansuri, I., Varshney, D., Kaurav, N., Lu, C. L., Kuo, Y. K., “Effects of A-site disorder on magnetic, electrical and thermal properties of La0.5−xLnxCa0.5−ySryMnO3 manganites”, Journal of Magnetism and Magnetic Materials,Vol. 323, No. 3-4, (2011), 316-323. https://doi.org/10.1016/j.jmmm.2010.09.026
54.   Banerjee, A., Pal, S., Rozenberg, E., Chaudhuri, B. K., “Adiabatic and non-adiabatic hopping conduction in La–Pb–Mn–O type system”, Journal of Alloys and Compounds, Vol. 326, No. 1-2, (2001), 85-88. https://doi.org/10.1016/s0925-8388(01)01229-4
55.   Austin, I. G., Mott, N. F., “Polarons in crystalline and non-crystalline materials”, Advances in Physics,Vol. 18, No. 71, (1969), 41-102. https://doi.org/10.1080/00018736900101267