Microhardness Optimization of Al–TiC Nanocomposite Produced by Mechanical Milling and Heat Treatment

Document Type : Original Research Article


Department of Materials Science and Engineering, Shahid Bahonar university of Kerman, Kerman, Kerman, Iran


In this study, the Al–TiC nanocomposite was produced by the mechanical milling and sintering process. Also, the optimization of the milling parameters was performed by the Taguchi method. The X-ray diffraction analysis, scanning electron microscopy, and microhardness test were used to analyze the phase characterization, microstructure, and mechanical properties of the Al–4% TiC nanocomposite. At first, the milling speed, milling time, and ball to powder weight ratio were considered as the input data, and the microhardness was considered as the output value of the Minitab software. According to the design of the experiment, 27 experiments must be performed, which were reduced to 9 by the Taguchi method. After the milling, the powders were subjected to the cold pressing and subsequent sintering at 450 °C. The microhardness results showed that the Al–4% TiC nanocomposite was formed with a maximum microhardness of 271 HV. Furthermore, a proper model was proposed and the results indicated that there was a good agreement between the experimental and predicted microhardness.


Main Subjects

 1.     Taghian Dehaghani, M., Ahmadian, M., “Fracture Mechanism of CoCrMo Porous Nanocomposite Prepared by Powder Metallurgy Route”, International Journal of Engineering, Vol. 31, No. 1, (2018), 19-24. https://doi.org/10.5829/ije.2018.31.01a.03
2.     Ameri Ekhtiarabadi, T., Zandrahimi, M., Ebrahimifar, H., “The Impact of Current Density of Electroplating on Microstructure and Mechanical Properties of Ni-ZrO2-TiO2 Composite Coating”, Advanced Ceramics Progress, Vol. 6, No. 1, (2020), 22-29. https://doi.org/10.30501/acp.2020.105929
3.     Nahvi, S. M., “Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings”, Advanced Ceramics Progress, Vol. 6, No. 3, (2020), 1-14. https:// doi.org/10.30501/acp.2020.227010.1033
4.     Khoshhal, R., “The Effect of Raw Material Ratios on the Fe-TiC/Al2O3 Composite Formation Mechanism”, Advanced Ceramics Progress, Vol. 3, No. 2, (2017), 25-30. https://doi.org/10.30501/acp.2017.90749
5.     Mortazavi, A., Razavi, M., Ebadzadeh, T., Sedaghat Ahangari Hossein Zadeh, A., “Effect of Milling Time on the Crystallite Size and Microstructure of Al2O3/Mo Nanocomposite”, Advanced Ceramics Progress, Vol. 2, No. 3, (2016), 12-16. https://doi.org/10.30501/acp.2016.70025
6.     Sasani, N., Houshyar Sadeghian, M., Khadivi, H., Golestanipour, M., “A Novel, Simple and Cost Effective Al A356/Al2O3 Nano-composite Manufacturing Route with Uniform Distribution of Nanoparticles”, International Journal of Engineering,Vol. 28, No. 9, (2015), 1320-1327. https://doi.org/10.5829/idosi.ije.2015.28.09c.09
7.     Kaushik, N., Singhal, S., “Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite”, International Journal of Engineering,Vol. 32, No. 1, (2019), 162-170. https://doi.org/10.5829/ije.2019.32.01a.21
8.     Mitra, R., Chiou, W. A., Fine, M. E., Weertman, J. R., “Interfaces in as-extruded XD Al/TiC and Al/TiB2 metal matrix composites”, Journal of Materials Research, Vol. 8, No. 9, (1993), 2380-2392. https://doi.org/10.1557/jmr.1993.2380
9.     Arefkhani, M., Razavi, M., Rahimipoor, M. R., Faeghinia, A., “The Effect of Rotation Speed on the Microstructure and Hardness of Synthesized Al-WC Nano-Composite by Centrifugal Casting”, Advanced Ceramics Progress, Vol. 2, No. 4, (2016), 1-6. https://doi.org/10.30501/acp.2016.70031
10.   Aswad, M. A., Awad, S. H., Kaayem, A. H., “Study on Iraqi Bauxite Ceramic Reinforced Aluminum Metal Matrix Composite Synthesized by Stir Casting”, International Journal of Engineering,Vol. 33, No. 7, (2020), 1331-1339. https://doi.org/10.5829/ije.2020.33.07a.20
11.   Mitra, R., Fine, M. E., Weertman, J. R., “Chemical reaction strengthening of Al/TiC metal matrix composites by isothermal heat treatment at 913 K”, Journal of Materials Research, Vol. 8, No. 9, (1993), 2370-2379. https://doi.org/10.1557/jmr.1993.2370
12.   Mahdavi, M., Khayati, G. R., “Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying”, International Journal of Engineering, Vol. 29, No. 12, (2016), 1726-1733. https://doi.org/10.5829/idosi.ije.2016.29.12c.11
13.   Kuldeep, B., Ravikumar, K. P., Pradeep, S., “Effect of Hexagonal Boron Nitrate on Microstructure and Mechanical Behavior of Al7075 Metal Matrix Composite Producing by Stir Casting Technique”, International Journal of Engineering,Vol. 32, No. 7, (2019), 1017-1022. https://doi.org/10.5829/ije.2019.32.07a.15
14.   Abbasi, N. F., Azari, K. R., Parvini, A. N., “Synthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy”, International Journal of Engineering, Vol. 24, No. 2, (2011), 123-130. http://www.ije.ir/article_71898_21fccba5f3ee974387c9075597c7cba7.pdf
15.   Rahaei, M. B., Yazdani-Rad, R., Kazemzadeh, A., “Synthesis and Characterization of Nanocrystalline Ni3Al Intermetallic during Mechanical Alloying Process”, International Journal of Engineering, Vol. 25, No. 2, (2012), 89-98. https://doi.org/10.5829/idosi.ije.2012.25.02c.01
16.   El-Eskandarany, M. S., “Mechanical Alloying: Nanotechnology: Materials Science and Powder Metallurgy”, 2nd Ed., Elsevier, Oxford, UK, (2015). http://refhub.elsevier.com/S2468-6069(16)30018-1/sref4
17.   Akbari, G. H., Taghian Dehghani, M., “Behavior of Cu-Cr Powder Mixtures During Mechanical Alloying”, International Journal of Engineering, Vol. 23, No. 1, (2010), 69-76. http://www.ije.ir/article_71834_380c6a8afec5b5dce8b0fb8825ecf6b5.pdf
18.   Nikzad, L., Ghofrani, S., Majidian, H., Ebadzadeh, T., “Effect of ball milling on reactive microwave sintering of MgO-TiO2 System”, Advanced Ceramics Progress, Vol. 2, No. 3, (2016), 25-28. https://doi.org/10.30501/acp.2016.70027
19.   Akbarpour Arbatan, M. R., Leisi Azar, F., Alipour, S., “Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering”, Advanced Ceramics Progress, Vol. 1, No. 3, (2015), 39-43. https://doi.org/10.30501/acp.2015.70011
20.   Lou, T., Fan, G., Ding, B., Hu, Z., “The synthesis of NbSi2 by mechanical alloying”, Journal of Materials Research, Vol. 12, No. 5, (1997), 1172-1175. https://doi.org/10.1557/jmr.1997.0162
21.   Golzar Shahri, M., Shafyei, A., Saidi, A., Abtahi, K., “Effect of CaO on the Formation of PSZ and γ-Zirconia Nanoparticles through Ball Milling”, Advanced Ceramics Progress, Vol. 1, No. 2, (2015), 40-44. https://doi.org/10.30501/acp.2015.90747
22.   Azimi, A., Shokuhfar, A., Nejadseyfi, O., “Mechanically alloyed Al7075–TiC nanocomposite: Powder processing, consolidation and mechanical strength”, Materials & Design (1980-2015), Vol. 66, (2015), 137-141. https://doi.org/10.1016/j.matdes.2014.10.046
23.   Feijoo, I., Merino, P., Pena, G., Rey, P. and Cabeza, M., “Microstructure and Mechanical Properties of an Extruded 6005A Al Alloy Composite Reinforced with TiC Nanosized Particles and Strengthened by Precipitation Hardening”, Metals, Vol. 10, No.8, (2020), 1050. https://doi.org/10.3390/met10081050
24.   Salem, H. G., El-Eskandarany, S., Kandil, A., Abdul Fattah, H., “Bulk Behavior of Ball Milled AA2124 Nanostructured Powders Reinforced with TiC”, Journal of Nanomaterials, Vol. 1, (2009), 479185. https://doi.org/10.1155/2009/479185
25.   Rezaei, A. R., Mobasherpour, I., Hadavi, M. M., “An Investigation on Milling Method in Reduction of Magnesium Nano-Powder Particles Based on Sustaining Chemical Activity”, Advanced Ceramics Progress, Vol. 4, No. 1, (2018), 12-17. https://doi.org/10.30501/acp.2018.90828
26.   Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Santillán-Rodríguez, C. R., Matutes-Aquino, J. A., Herrera-Ramírez, J. M., Miki-Yoshida, M., Martínez-Sánchez, R., “Characterization of Al2024-CNTs composites produced by mechanical alloying”, Powder Technology, Vol. 212, (2011), 390–396. https://doi.org/10.1016/j.powtec.2011.06.007
27.   Zuhailawati, H., Mahani, Y., “Effects of milling time on hardness and electrical conductivity of in situ Cu–NbC composite produced by mechanical alloying”, Journal of Alloys and Compounds, Vol. 476, No. 1-2, (2009), 142–146. https://doi.org/10.1016/j.jallcom.2008.09.018
28.   Barzegar, M., Vishlaghi, A. A., “Investigation on solid solubility and physical properties of Cu–Fe/CNT nano-composite prepared via mechanical alloying route”, Powder Technology, Vol. 47, (2014), 37–42. https://doi.org/10.1016/j.powtec.2014.08.010
29.   Sorkhe, Y. A., Aghajani, H., Tabrizi, A. T., “Mechanical alloying and sintering of nanostructured TiO2 reinforced copper composite and its characterization”, Materials and Design, Vol. 58, (2014), 168–174. https://doi.org/10.1016/j.matdes.2014.01.040
30.   Sahani, P., Mula, S., Roy, P. K., Kang, P. C., Koch, C. C., “Structural investigation of vacuum sintered Cu–Cr and Cu–Cr–4% SiC nanocomposites prepared by mechanical alloying”, Materials Science and Engineering: A, Vol. 528, No. 25-26, (2011), 7781– 7789. https://doi.org/10.1016/j.msea.2011.06.086
31.   Basariya, M. R., Srivastava, V. C., Mukhopadhyay, N. K., “Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling”, Materials and Design, Vol. 64, (2014), 542–549. https://doi.org/10.1016/j.matdes.2014.08.019
32.   Dekhil, L., Alleg, S., Bououdina, M., Suñol, J. J., Grenèche, J. M., “Phase transformations and magnetic properties of ball-milled Fe-6P-1.7C powders”, Advanced Powder Technology, Vol. 26, No. 2, (2015), 519-526. https://doi.org/10.1016/j.apt.2014.12.011
33.   Lutterotti, L., Matthies, S., Wenk, H. R., “MAUD: A friendly java program for material analysis using diffraction”, IUCr: Newsletter of the CPD, Vol. 21, (1999), 14-15. https://www.iucr.org/__data/assets/pdf_file/0016/21634/cpd21.pdf
34.   Kumar, A. A., Patton, M. R., Hennek, J. W., Lee, S. Y. R., Alesio-Spina, G. D., Yang, X., Kanter, J., Shevkoplyas, S. S., Brugnara, C., Whitesides, G. M., “Density-based separation in multiphase systems provides a simple method to identify sickle cell disease”, Proceedings of the National Academy of Sciences, Vol. 111, No. 41, (2014), 14864-14869. https://doi.org/10.1073/pnas.1414739111
35.   Patankar, S. N., Xiao, S. Q., Lewandowski, J. J., Heuer, A. H., “The mechanism of mechanical alloying of MoSi2”, Journal of Materials Research, Vol. 8, No. 6 (1993), 1311-1316. https://doi.org/10.1557/jmr.1993.1311
36.   Schoenitz, M., Dreizin, E. L., “Structure and properties of Al-Mg mechanical alloys”, Journal of Materials Research, Vol. 18, No. 8, (2003), 1827-1836. https://doi.org/10.1557/jmr.2003.0255
37.   Dieter, G. E., Bacon, D. J., “Mechanical Metallurgy”, Vol. 3, New York: McGraw-Hill, (1986). https://dokumen.tips/documents/mechanical-metallurgy-by-dieterpdf.html
38.   Cullity, B. D., Stock, S. R., “Elements of X-ray Diffraction”, 3rd Eds., Prentice-Hall, New York, (2001). https://www.pearson.com/us/higher-education/program/Cullity-Elements-of-X-Ray-Diffraction-3rd-Edition/PGM113710.html
39.   Eckert, J., Holzer, J. C., Krill, C. E., Johnson, W. L., “Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition”, Journal of Materials Research, Vol. 7, No. 7, (1992), 1751-1761. https://doi.org/10.1557/jmr.1992.1751
40.   Suryanarayana, C., “Mechanical alloying and milling”, Progress Materials Science, Vol. 46, No. 1-2, (2001), 1-184. https://doi.org/10.1016/s0079-6425(99)00010-9