Pseudocapacitive Behavior of Nb2O5-TNTs Nanocomposite for Lithium-ion Micro-batteries

Document Type : Original Research Article

Authors

1 MS, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

2 Assistant Professor, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

3 Associate Professor, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

Abstract

The present study aims to introduce Niobium pentoxide-Titanium nanotube (Nb2O5-TNTs) composite as a novel anode material synthesized through hydrothermal method. In this respect, Nb2O5 nanoparticles and TNTs are separately synthesized through sonochemical and anodizing processes, respectively. According to FESEM images, the well-oriented TNTs with inner and outer diameters of 70 and 88 nm, respectively, are well decorated by Nb2O5 nanoparticles. The Nb2O5-TNTs anode shows the areal charge and discharge capacities of 0.167 mAh/cm2 and 0.146 mAh/cm2, respectively, at 0.113 mA/cm2 as well as 60% capacitive storage in 20 mV/s. High power Nb2O5-TNT anode reveals 86% reversible capacity in the 16th cycle with a columbic efficiency of 84% for the 16th cycle. In addition, the charge transfer resistance in TNTs declines from 750 Ω to 680 Ω after decorating by Nb2O5. The superior performance of Nb2O5-TNT composites is taken into account to derive higher charge storage from a capacitive charge storage which is dominant in the diffusion-controlled process. Therefore, Nb2O5-TNT composite can be applied to the next-generation pseudocapacitive anode in lithium-ion batteries.

Keywords

Main Subjects


  1. Nitta, N., Wu, F., Lee, J. T., Yushin, G., “Li-ion battery materials: present and future”, Materials Today, Vol. 18, No. 5, (2015), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  2. Ning, H., Pikul, J. H., Zhang, R., Li, X., Xu, S., Wang, J., Rogers, J. A., King, W. P., Braun, P. V., “Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries”, Proceedings of the National Academy of Sciences, Vol. 112, No. 21, (2015), 6573-6578. https://doi.org/10.1073/pnas.1423889112
  3. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., Capiglia, C., “Review on recent progress of nanostructured anode materials for Li-ion batteries”, Journal of Power Sources, Vol. 257, (2014), 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
  4. Oudenhoven, J. F., Baggetto, L., Notten, P. H., “All‐solid‐state lithium‐ion microbatteries: a review of various three‐dimensional concepts”, Advanced Energy Materials, Vol. 1, No. 1, (2011), 10-33. https://doi.org/10.1002/aenm.201000002
  5. Feng, X., Li, Q., Wang, K., “Waste Plastic Triboelectric Nanogenerators Using Recycled Plastic Bags for Power Generation”, ACS Applied Materials and Interfaces, Vol. 13, No. 1, (2021), 400-410. https://doi.org/10.1021/acsami.0c16489
  6. Tang, Y., Zhang, Y., Li, W., Ma, B., Chen, X., “Rational material design for ultrafast rechargeable lithium-ion batteries”, Chemical Society Reviews, Vol. 44, No. 17, (2015), 5926-5940. https://doi.org/10.1039/c4cs00442f
  7. Kai, W., Xiao, F., Jinbo, P., Jun, R., Chongxiong, D., Liwei, L., “State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented kalman filter”, International Journal of Electrochemical Science, Vol. 15, No. 9, (2020), 9499-9516. https://doi.org/10.20964/2020.09.84
  8. Augustyn, V., Simon, P., Dunn, B., “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy and Environmental Science, Vol. 7, No. 5, (2014), 1597-614. https://doi.org/10.1039/c3ee44164d
  9. Griffith, K. J., Forse, A. C., Griffin, J. M., Grey, C. P., “High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases”, Journal of the American Chemical Society, Vol. 138, No. 28, (2016), 8888-8899. https://doi.org/10.1021/jacs.6b04345
  10. Augustyn, V., Come, J., Lowe, M. A., Kim, J. W., Taberna, P. L., Tolbert S. H, Abruña, H. D., Simon, P., Dunn, B., “High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance”, Nature Materials, Vol. 12, No. 6, (2013), 518-522. https://doi.org/10.1038/nmat3601
  11. Brezesinski, K., Wang, J., Haetge, J., Reitz, C., Steinmueller, S. O., Tolbert, S. H., Smarsly, B. M., Dunn, B., Brezesinski, T., “Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains”, Journal of the American Chemical Society, Vol. 132, No. 20, (2010), 6982-6990.  https://doi.org/10.1021/ja9106385
  12. Zhao, Y., Gao, X., Gao, H., Jin, H., Goodenough, J. B., “Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a High‐Energy‐Density Cathode for Sodium‐Ion Batteries”, Advanced Functional Materials, Vol. 30, No. 10, (2020), 1908680. https://doi.org/10.1002/adfm.201908680
  13. Zhao, Y., Gao, X., Gao, H., Dolocan, A., Goodenough, J. B., “Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions”, Nano Letters, Vol. 21, No. 5, (2021), 2281-2287. https://doi.org/10.1021/acs.nanolett.1c00100
  14. Zhao, Y., Ding, C., Hao, Y., Zhai, X., Wang, C., Li, Y., Li, J., Jin, H., “Neat Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance”, ACS Applied Materials and Interfaces, Vol. 10, No. 32, (2018), 27106-27115. https://doi.org/10.1021/acsami.8b00873
  15. Wang, C., Zhao, Y., Su, D., Ding, C., Wang, L., Yan, D., Li, J., Jin, H., “Synthesis of NiO Nano Octahedron Aggregates as High-Performance Anode Materials for Lithium Ion Batteries”, Electrochimica Acta, Vol. 231, (2017), 272-278. https://doi.org/10.1016/j.electacta.2017.02.061
  16. Guan, L., Yu, L., Chen, G. Z., “Capacitive and non-capacitive faradaic charge storage”, Electrochimica Acta, Vol. 206, (2016), 464-478. https://doi.org/10.1016/j.electacta.2016.01.213
  17. Wang, K., Liu, C., Sun, J., Zhao, K., Wang, L., Song, J., Duan, C., Li, L., “State of charge estimation of composite energy storage systems with supercapacitors and lithium batteries”, Complexity, (2021), 2021. https://doi.org/10.1155/2021/8816250
  18. Gogotsi, Y., Penner, R. M., “Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like?”, ACS Nano, Vol. 12, No. 3, (2018), 2081-2083. https://doi.org/10.1021/acsnano.8b01914
  19. Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, (1999), 698. https://doi.org/10.1007/978-1-4757-3058-6
  20. Wang, C., Zhao, Y., Zhai, X., Ding, C., Zhao, X., Li, J., Jin, H., “Graphene boosted pseudocapacitive lithium storage: A case of G-Fe2O3”, Electrochimica Acta, Vol. 282, (2018), 955-963. https://doi.org/10.1016/j.electacta.2018.07.022
  21. Wang, K., Li, L., Zhang, T., Liu, Z., “Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability”, Energy, Vol. 70, (2014), 612-617. https://doi.org/10.1016/j.energy.2014.04.034
  22. Wei, W., Ihrfors, C., Björefors, F., Nyholm, L., “Capacity Limiting Effects for Freestanding, Monolithic TiO2 Nanotube Electrodes with High Mass Loadings”, ACS Applied Energy Materials, Vol. 3, No. 5, (2020), 4638-4649. https://doi.org/10.1021/acsaem.0c00298
  23. Liu, Z., Andreev, Y. G., Armstrong, A. R., Brutti, S., Ren, Y., Bruce, P. G., “Nanostructured TiO2 (B): the effect of size and shape on anode properties for Li-ion batteries”, Progress in Natural Science: Materials International, Vol. 23, No. 3, (2013), 235-344. https://doi.org/10.1016/j.pnsc.2013.05.001
  24. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P., Zhu, H. Y., “Electrochemical lithium storage of titanate and titania nanotubes and nanorods”, The Journal of Physical Chemistry C, Vol. 111, No. 16, (2007), 6143-6148. https://doi.org/10.1021/jp0702595
  25. Wang, W., Li, Y., Li, L., Wang, L., Wang, K., “SnO2/TiO2 Nanocomposite Prepared by Pulsed Laser Deposition as Anode Material for Flexible Quasi-solid-state Lithium-Ion Batteries”, International Journal of Electrochemical Science, Vol. 15, No. 12, (2020), 11709-11722. https://doi.org/10.20964/2020.12.49
  26. Wei, J., Liu, J. X., Wu, Z. Y., Zhan, Z. L., Shi, J., Xu, K., “Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries”, Journal of Nanoscience and Nanotechnology, Vol. 15, No. 7, (2015), 5013-5019. https://doi.org/10.1166/jnn.2015.9847
  27. Ortiz, G. F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J. L., Knauth, P., “Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes”, Chemistry of Materials, Vol. 21, No. 1, (2009), 63-67. https://doi.org/10.1021/cm801670u
  28. Wang, W., Tian, M., Abdulagatov, A., George, S. M., Lee, Y. C., Yang, R., “Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications”, Nano Letters, Vol. 12, No. 2, (2012), 655-660. https://doi.org/10.1021/nl203434g
  29. Lou, S., Cheng, X., Gao, J., Li, Q., Wang, L., Cao, Y., Ma, Y., Zuo, P., Gao, Y., Du, C., Huo, H., “Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage”, Energy Storage Materials, Vol. 11, (2018), 57-66. https://doi.org/10.1016/j.ensm.2017.09.012
  30. Liu, G., Zhao, L., Sun, R., Chen, W., Hu, M., Liu, M., Duan, X., Zhang, T., “Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life”, Electrochimica Acta, Vol. 259, (2018), 20-27. https://doi.org/10.1016/j.electacta.2017.10.138
  31. Liu, S., Zhou, J., Cai, Z., Fang, G., Pan, A., Liang, S., “Nb2O5 microstructures: a high-performance anode for lithium ion batteries”, Nanotechnology, Vol. 27, No. 46, (2016), 46LT01. https://doi.org/10.1088/0957-4484/27/46/46lt01
  32. Lübke, M., Shin, J., Marchand, P., Brett, D., Shearing, P., Liu, Z., Darr, J. A., “Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries”, Journal of Materials Chemistry A, Vol. 3, No. 45, (2015), 22908-22914. https://doi.org/10.1039/c5ta07554h
  33. Mohammadifar, M., Massoudi, A., Naderi, N., Eshraghi, M. J., “Nb2O5 Nanoparticles Synthesis by Chemical Surfactant-Free Methods: ltrasonic Assisted Approach”, Advanced Ceramics Progress, Vol. 2, No. 4, (2016), 13-17. https://doi.org/10.30501/ACP.2016.90836
  34. Regonini, D., Bowen, C. R., Jaroenworaluck, A., Stevens, R., “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes”, Materials Science and Engineering: R: Reports, Vol. 74, No. 12, (2013), 377-406. https://doi.org/10.1016/j.mser.2013.10.001
  35. Kim, H. Y., Han, J. A., Kweon, D. K., Park, J. D., Lim, S. T., “Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch”, Carbohydrate Polymers, Vol. 93, No. 2, (2013), 582-588. https://doi.org/10.1016/j.carbpol.2012.12.050
  36. Sun, L., Li, J., Wang, C., Li, S., Lai, Y., Chen, H., Lin, C., “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity”, Journal of Hazardous Materials, Vol. 171, No. 1-3, (2009), 1045-1050. https://doi.org/10.1016/j.jhazmat.2009.06.115
  37. Lindström, H., Södergren, S., Solbrand, A., Rensmo, H., Hjelm, J., Hagfeldt, A., Lindquist, S. E., “Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films”, The Journal of Physical Chemistry B, Vol. 101, No. 39, (1997), 7717-7722. https://doi.org/10.1021/jp970490q
  38. Venkatachalam, P., Kesavan, T., Maduraiveeran, G., Kundu, M., Sasidharan, M., “Self-assembled mesoporous Nb2O5 as a high performance anode material for rechargeable lithium ion batteries”, Materials Research Express, Vol. 6, No. 3, (2018), 035502. https://doi.org/10.1088/2053-1591/aaf350