Pseudocapacitive Behavior of Nb2O5-TNTs Nanocomposite for Lithium-ion Micro-batteries

Document Type : Original Research Article


1 MS, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

2 Assistant Professor, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

3 Associate Professor, Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran


The present study aims to introduce Niobium pentoxide-Titanium nanotube (Nb2O5-TNTs) composite as a novel anode material synthesized through hydrothermal method. In this respect, Nb2O5 nanoparticles and TNTs are separately synthesized through sonochemical and anodizing processes, respectively. According to FESEM images, the well-oriented TNTs with inner and outer diameters of 70 and 88 nm, respectively, are well decorated by Nb2O5 nanoparticles. The Nb2O5-TNTs anode shows the areal charge and discharge capacities of 0.167 mAh/cm2 and 0.146 mAh/cm2, respectively, at 0.113 mA/cm2 as well as 60% capacitive storage in 20 mV/s. High power Nb2O5-TNT anode reveals 86% reversible capacity in the 16th cycle with a columbic efficiency of 84% for the 16th cycle. In addition, the charge transfer resistance in TNTs declines from 750 Ω to 680 Ω after decorating by Nb2O5. The superior performance of Nb2O5-TNT composites is taken into account to derive higher charge storage from a capacitive charge storage which is dominant in the diffusion-controlled process. Therefore, Nb2O5-TNT composite can be applied to the next-generation pseudocapacitive anode in lithium-ion batteries.


Main Subjects

  1. Nitta, N., Wu, F., Lee, J. T., Yushin, G., “Li-ion battery materials: present and future”, Materials Today, Vol. 18, No. 5, (2015), 252-264.
  2. Ning, H., Pikul, J. H., Zhang, R., Li, X., Xu, S., Wang, J., Rogers, J. A., King, W. P., Braun, P. V., “Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries”, Proceedings of the National Academy of Sciences, Vol. 112, No. 21, (2015), 6573-6578.
  3. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., Capiglia, C., “Review on recent progress of nanostructured anode materials for Li-ion batteries”, Journal of Power Sources, Vol. 257, (2014), 421-443.
  4. Oudenhoven, J. F., Baggetto, L., Notten, P. H., “All‐solid‐state lithium‐ion microbatteries: a review of various three‐dimensional concepts”, Advanced Energy Materials, Vol. 1, No. 1, (2011), 10-33.
  5. Feng, X., Li, Q., Wang, K., “Waste Plastic Triboelectric Nanogenerators Using Recycled Plastic Bags for Power Generation”, ACS Applied Materials and Interfaces, Vol. 13, No. 1, (2021), 400-410.
  6. Tang, Y., Zhang, Y., Li, W., Ma, B., Chen, X., “Rational material design for ultrafast rechargeable lithium-ion batteries”, Chemical Society Reviews, Vol. 44, No. 17, (2015), 5926-5940.
  7. Kai, W., Xiao, F., Jinbo, P., Jun, R., Chongxiong, D., Liwei, L., “State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented kalman filter”, International Journal of Electrochemical Science, Vol. 15, No. 9, (2020), 9499-9516.
  8. Augustyn, V., Simon, P., Dunn, B., “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy and Environmental Science, Vol. 7, No. 5, (2014), 1597-614.
  9. Griffith, K. J., Forse, A. C., Griffin, J. M., Grey, C. P., “High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases”, Journal of the American Chemical Society, Vol. 138, No. 28, (2016), 8888-8899.
  10. Augustyn, V., Come, J., Lowe, M. A., Kim, J. W., Taberna, P. L., Tolbert S. H, Abruña, H. D., Simon, P., Dunn, B., “High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance”, Nature Materials, Vol. 12, No. 6, (2013), 518-522.
  11. Brezesinski, K., Wang, J., Haetge, J., Reitz, C., Steinmueller, S. O., Tolbert, S. H., Smarsly, B. M., Dunn, B., Brezesinski, T., “Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains”, Journal of the American Chemical Society, Vol. 132, No. 20, (2010), 6982-6990.
  12. Zhao, Y., Gao, X., Gao, H., Jin, H., Goodenough, J. B., “Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a High‐Energy‐Density Cathode for Sodium‐Ion Batteries”, Advanced Functional Materials, Vol. 30, No. 10, (2020), 1908680.
  13. Zhao, Y., Gao, X., Gao, H., Dolocan, A., Goodenough, J. B., “Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions”, Nano Letters, Vol. 21, No. 5, (2021), 2281-2287.
  14. Zhao, Y., Ding, C., Hao, Y., Zhai, X., Wang, C., Li, Y., Li, J., Jin, H., “Neat Design for the Structure of Electrode To Optimize the Lithium-Ion Battery Performance”, ACS Applied Materials and Interfaces, Vol. 10, No. 32, (2018), 27106-27115.
  15. Wang, C., Zhao, Y., Su, D., Ding, C., Wang, L., Yan, D., Li, J., Jin, H., “Synthesis of NiO Nano Octahedron Aggregates as High-Performance Anode Materials for Lithium Ion Batteries”, Electrochimica Acta, Vol. 231, (2017), 272-278.
  16. Guan, L., Yu, L., Chen, G. Z., “Capacitive and non-capacitive faradaic charge storage”, Electrochimica Acta, Vol. 206, (2016), 464-478.
  17. Wang, K., Liu, C., Sun, J., Zhao, K., Wang, L., Song, J., Duan, C., Li, L., “State of charge estimation of composite energy storage systems with supercapacitors and lithium batteries”, Complexity, (2021), 2021.
  18. Gogotsi, Y., Penner, R. M., “Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like?”, ACS Nano, Vol. 12, No. 3, (2018), 2081-2083.
  19. Conway, B. E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, (1999), 698.
  20. Wang, C., Zhao, Y., Zhai, X., Ding, C., Zhao, X., Li, J., Jin, H., “Graphene boosted pseudocapacitive lithium storage: A case of G-Fe2O3”, Electrochimica Acta, Vol. 282, (2018), 955-963.
  21. Wang, K., Li, L., Zhang, T., Liu, Z., “Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability”, Energy, Vol. 70, (2014), 612-617.
  22. Wei, W., Ihrfors, C., Björefors, F., Nyholm, L., “Capacity Limiting Effects for Freestanding, Monolithic TiO2 Nanotube Electrodes with High Mass Loadings”, ACS Applied Energy Materials, Vol. 3, No. 5, (2020), 4638-4649.
  23. Liu, Z., Andreev, Y. G., Armstrong, A. R., Brutti, S., Ren, Y., Bruce, P. G., “Nanostructured TiO2 (B): the effect of size and shape on anode properties for Li-ion batteries”, Progress in Natural Science: Materials International, Vol. 23, No. 3, (2013), 235-344.
  24. Zhang, H., Li, G. R., An, L. P., Yan, T. Y., Gao, X. P., Zhu, H. Y., “Electrochemical lithium storage of titanate and titania nanotubes and nanorods”, The Journal of Physical Chemistry C, Vol. 111, No. 16, (2007), 6143-6148.
  25. Wang, W., Li, Y., Li, L., Wang, L., Wang, K., “SnO2/TiO2 Nanocomposite Prepared by Pulsed Laser Deposition as Anode Material for Flexible Quasi-solid-state Lithium-Ion Batteries”, International Journal of Electrochemical Science, Vol. 15, No. 12, (2020), 11709-11722.
  26. Wei, J., Liu, J. X., Wu, Z. Y., Zhan, Z. L., Shi, J., Xu, K., “Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries”, Journal of Nanoscience and Nanotechnology, Vol. 15, No. 7, (2015), 5013-5019.
  27. Ortiz, G. F., Hanzu, I., Djenizian, T., Lavela, P., Tirado, J. L., Knauth, P., “Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes”, Chemistry of Materials, Vol. 21, No. 1, (2009), 63-67.
  28. Wang, W., Tian, M., Abdulagatov, A., George, S. M., Lee, Y. C., Yang, R., “Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications”, Nano Letters, Vol. 12, No. 2, (2012), 655-660.
  29. Lou, S., Cheng, X., Gao, J., Li, Q., Wang, L., Cao, Y., Ma, Y., Zuo, P., Gao, Y., Du, C., Huo, H., “Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage”, Energy Storage Materials, Vol. 11, (2018), 57-66.
  30. Liu, G., Zhao, L., Sun, R., Chen, W., Hu, M., Liu, M., Duan, X., Zhang, T., “Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life”, Electrochimica Acta, Vol. 259, (2018), 20-27.
  31. Liu, S., Zhou, J., Cai, Z., Fang, G., Pan, A., Liang, S., “Nb2O5 microstructures: a high-performance anode for lithium ion batteries”, Nanotechnology, Vol. 27, No. 46, (2016), 46LT01.
  32. Lübke, M., Shin, J., Marchand, P., Brett, D., Shearing, P., Liu, Z., Darr, J. A., “Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries”, Journal of Materials Chemistry A, Vol. 3, No. 45, (2015), 22908-22914.
  33. Mohammadifar, M., Massoudi, A., Naderi, N., Eshraghi, M. J., “Nb2O5 Nanoparticles Synthesis by Chemical Surfactant-Free Methods: ltrasonic Assisted Approach”, Advanced Ceramics Progress, Vol. 2, No. 4, (2016), 13-17.
  34. Regonini, D., Bowen, C. R., Jaroenworaluck, A., Stevens, R., “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes”, Materials Science and Engineering: R: Reports, Vol. 74, No. 12, (2013), 377-406.
  35. Kim, H. Y., Han, J. A., Kweon, D. K., Park, J. D., Lim, S. T., “Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch”, Carbohydrate Polymers, Vol. 93, No. 2, (2013), 582-588.
  36. Sun, L., Li, J., Wang, C., Li, S., Lai, Y., Chen, H., Lin, C., “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity”, Journal of Hazardous Materials, Vol. 171, No. 1-3, (2009), 1045-1050.
  37. Lindström, H., Södergren, S., Solbrand, A., Rensmo, H., Hjelm, J., Hagfeldt, A., Lindquist, S. E., “Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films”, The Journal of Physical Chemistry B, Vol. 101, No. 39, (1997), 7717-7722.
  38. Venkatachalam, P., Kesavan, T., Maduraiveeran, G., Kundu, M., Sasidharan, M., “Self-assembled mesoporous Nb2O5 as a high performance anode material for rechargeable lithium ion batteries”, Materials Research Express, Vol. 6, No. 3, (2018), 035502.