Heat Treatment of Pulsed Electroplated Nickel Deposited on AA2024 Aluminum

Document Type : Original Research Article


1 Department of Metallurgy and Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Alborz, Iran

2 School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran, Tehran, Iran


In this study, pure nickel was deposited on AA2024 aluminum via pulsed electrodeposition using two duty cycles (25 % and 50 %) at two different frequencies (50 and 100 Hz). The coated specimens were then heat-treated in an argon atmosphere at 500 °C for one hour. The treated specimens were characterized using Optical Microscope (OM), Scanning Electron Microscope (SEM) equipped with energy dispersive spectrometer (EDS), and X-Ray Diffraction (XRD) analysis. According to the results, the coatings were thickened upon increasing the duty cycle and frequency. Heat treatment of the nickel-coated specimen under the duty cycle of 25 % and frequency of 50 Hz experienced formation of Al3Ni intermetallic compound at the interface of the nickel coating and aluminum-based substrate. Heat treatment adversely affected the corrosion resistance of the nickel-coated specimens. Nevertheless, the specimens with Al3Ni intermetallic compound at their interface demonstrated better corrosion resistance among heat-treated materials.


Main Subjects

  1. Davis, J. R., Ed., Aluminum and Aluminum Alloys, Alloying: Understanding the Basics, ASM International, (2001), 351-416. https://doi.org/10.31399/asm.tb.aub.t61170351
  2. Dorward, R. C., Pritchett, T. R., “Adanced aluminium alloys for aircraft and aerospace applications”, Materials & Design, Vol. 9, No. 2, (1988), 63-69. https://doi.org/10.1016/0261-3069(88)90076-3
  3. Thompson, G. E., Habazaki, H., Shimizu, K., Sakairi, M., Skeldon, P., Zhou, X., Wood, G. C., “Anodizing of aluminium alloys”, Aircraft Engineering and Aerospace Technology, Vol. 71, No. 3, (1999), 228-238. https://doi.org/10.1108/00022669910270709
  4. Rashidi, A. M., Amadeh, A., “Effect of Electroplating Parameters on Microstructure of Nanocrystalline Nickel Coatings", Journal of Materials Science & Technology, Vol. 26, No. 1, (2010), 82-86. https://doi.org/10.1016/s1005-0302(10)60013-8
  5. Naeem, M., Díaz-Guillén, J. C., Akram, M., Iqbal, J., Naz, M. Y., Shafiq, M., “Novel Active Screen Plasma Nitriding Of Aluminum Using Aluminum Cathodic CAGE”, Surface Review and Letters, Vol. 27, No. 09, (2020), 1950205.
  6. Figueroa, R., Abreu, C. M., Cristóbal, M. J., Pena, G., “Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy”, Wear, Vol. 276, (2012), 53-60. https://doi.org/10.1016/j.wear.2011.12.005
  7. Li, Y., Zhaob, J., Zenga, G., Guana, C., He, X., “Ni/Ni3Al microlaminate composite produced by EB-PVD and themechanical properties”, Materials Letters, Vol. 58, No. 10, (2004), 1629–1633. https://doi.org/10.1016/j.matlet.2003.09.052
  8. Rezaei, M., Jeshvaghani, R. A., Shahverdi, H. R., Mojaver, R., Torkamany, M. J., “Formation of Ni-rich aluminide layers on an A356 aluminum alloy by a combined electroplating/laser alloying treatment: Microstructure and tribological characteristics”, Journal of Manufacturing Processes, Vol. 29, (2017), 310-319. https://doi.org/10.1016/j.jmapro.2017.07.028
  9. Naeimianm, H., Mofid, M. A., “TLP bonding of Ti−6Al−4V to Al 2024 using thermal spray Babbitt alloy interlayer”, Transactions of Nonferrous Metals Society of China, Vol. 30, No. 5, (2020), 1267-1276. https://doi.org/10.1016/s1003-6326(20)65294-3
  10. Heydarzadeh Sohi, M., Ansari, M., Ghazizadeh, M., Zebardast, H., “Liquid phase surface nitriding of aluminium using TIG process”, Surface Engineering, Vol. 31, No. 8, (2015), 598-604. https://doi.org/10.1179/1743294414y.0000000372
  11. Carvalho, A. L. M.,Voorwald, H. J. C., “Influence of shot peening and hard chromium electroplating on the fatigue strength of 7050-T7451 aluminum alloy”, International Journal of Fatigue, Vol. 29, No. 7, (2007), 1282-1291. https://doi.org/10.1016/j.ijfatigue.2006.10.003
  12. Taye, D., Mohanty, S., Das, A. K., Singh, K. N., “Electroless Ni–Al2O3–WS2 Composite Coating on Aluminum Substrate”, Transactions of the Indian Institute of Metals, Vol. 72, No. 9, (2019), 2281-2292. https://doi.org/10.1007/s12666-019-01677-1
  13. He, L., Tan, Y., Wang, X., Xu, T., Hong, X., “Microstructure and wear properties of Al2O3-CeO2/Ni-base alloy composite coatings on aluminum alloys by plasma spray”, Applied Surface Science, Vol. 314, (2014), 760-767. https://doi.org/10.1016/j.apsusc.2014.07.047
  14. Hughes, A. E., Parvizi, R., Forsyth, M., “Microstructure and corrosion of AA2024”, Corrosion Reviews, Vol. 33, No. 1-2, (2015), 1-30. https://doi.org/10.1515/corrrev-2014-0039
  15. Jung, J., Oak, J., Kim, Y. H., Cho, Y. J., Park, Y. H., “Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds”, Metals and Materials International, Vol. 23, No. 6, (2017), 1097-1105. https://doi.org/10.1007/s12540-017-7158-y
  16. Bahri, H., Danaee, I., Rashed, G. R., Dabiri, A. R., “Scratch and wear resistance of nano-silica-modified silicate conversion coating on aluminium”, Materials Science and Technology, Vol. 32, No. 13, (2016), 1346-1353. https://doi.org/10.1080/02670836.2015.1124192
  17. Adabi, M., Amadeh, A. A., “Formation mechanisms of Ni–Al intermetallics during heat treatment of Ni coating on 6061 Al substrate”, Transactions of Nonferrous Metals Society of China, Vol. 25, No. 12, (2015) 3959-3966. https://doi.org/10.1016/s1003-6326(15)64073-0
  18. Li, C., Yuan, Z., Guo, R., Xuan, W., Ren, Z., Zhong, Y., Li, X., Wang, H., Wang, Q., “Reaction diffusion in Ni–Al diffusion couples in steady magnetic fields”, Journal of Alloys and Compounds, Vol. 641, (2015), 7-13. https://doi.org/10.1016/j.jallcom.2015.04.061
  19. Prasad, D. S., Ebenezer, N. S., Shoba, C., Raju, P., Rao, P. S., “The Effect of T6 Heat Treatment on Corrosion Behavior of Nickel Electroplated Metal Matrix Composites”, Silicon, Vol. 11, No. 4, (2019), 2025–2032. https://doi.org/10.1007/s12633-018-0023-x
  20. Goli, F., Jamaati, R., “Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy”, Materials Research Express, Vol. 6, No. 6, (2019), 066514. https://doi.org/10.1088/2053-1591/ab0a1f
  21. Ghorbanzade, T., Soltanipour, A., Dehghani, K., Chabok, A., “Microstructural evolutions and mechanical properties of friction stir welded AA2024-3”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 230, No. 1, (2014), 75-87. https://doi.org/10.1177/1464420714545369
  22. Hanachi, M., Seyedraoufi, Z. S., Abouei, V., “Investigation of Microstructure, Hardness, and Corrosion Resistance of Ni-P-GO Electroless Nanocomposite Coating on AZ31D Alloy Surface”, Advanced Ceramics Progress, Vol. 6, No. 3, (2020), 55-62. https://doi.org/10.30501/ACP.2020.233518.1038
  23. Lajevardi, S. A., Shahrabi, T., “Effects of pulse electrodeposition parameters on the properties of Ni–TiO2 nanocomposite coatings”, Applied Surface Science, Vol. 256, No. 22, (2010), 6775-6781. https://doi.org/10.1016/j.apsusc.2010.04.088
  24. Kumar, K. A, Kalaignan, G. P., Muralidharan, V. S., “Direct and pulse frequency electrodeposition of Ni–W–TiO2 nanocomposite coatings”, Ceramics Internatinal, Vol. 39, No. 3, (2013), 2827-2834. https://doi.org/10.1016/j.ceramint.2012.09.054
  25. Seyedraoufi, Z. S., Mirdamadi, S., “Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application”, Materials Chemistry and Physics, Vol. 148, No. 3, (2014), 519-527. https://doi.org/10.1016/j.matchemphys.2014.06.067
  26. Moradi, E. H., Jafarzadeh, K., Borji, S., Abbaszadeh, H., “Pulse electrodeposition as a new approach in electrowinning of high purity cobalt from WC–Co scraps. Part I: The effect of frequency and duty cycle”, Minerals Engineering, Vol. 77, (2015), 10-16. https://doi.org/10.1016/j.mineng.2015.02.012
  27. Adabi, M., Amadeh, A. A., “Electrodeposition mechanism of Ni–Al composite coating”, Transactions of Nonferrous Metals Society of China, Vol. 24, No. 10, (2014), 3189-3195. https://doi.org/10.1016/s1003-6326(14)63459-2
  28. Adabi, M., Amadeh, A., “Effect of electrodeposition conditions on properties of Ni–Al composite coatings”, Surface Engineering, Vol. 31, No. 9, (2015) 650-658. https://doi.org/10.1179/1743294414y.0000000449
  29. Zhang, P., Lv, Z., Liu, X., Xie, G., Zhang, B., “Electroless nickel plating on alumina ceramic activated by metallic nickel as electrocatalyst for oxygen evolution reaction”, Catalysis Communications, Vol. 149, (2021), 106238. https://doi.org/10.1016/j.catcom.2020.106238
  30. Li, H., He, Y., Fan, Y., Xu, W., Yang, Q., “Pulse electrodeposition and corrosion behavior of Ni–W/MWCNT nanocomposite coatings”, RSC Advances, Vol. 5, No. 84, (2015), 68890-68899. https://doi.org/10.1039/c5ra09462c
  31. Atarchi, M., Sadrnezhad, S., “Pulse reverse electrodeposition of spherical Ni-MWCNT composite skein”, International Journal of Engineering, Transactions B: Applications, Vol. 22, No. 2, (2009), 161-168. https://www.ije.ir/article_71780.html
  32. Borkar, T., Harimkar, S. P., “Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings”, Surface and Coatings Technology, Vol. 205, No. 17-18, (2011), 4124–4134. https://doi.org/10.1016/j.surfcoat.2011.02.057
  33. Shajari, Y., Porhonar, M., Seyedraoufi, Z. S., Razavi, S. H., Baghdadabad, D. M., Yousefnia, H., Farahani, M., “Improvement of the NiBrAl Casting Alloy Surface Properties by Electroless Ni-B Plating for Dynamic Marine Applications”, Physical Mesomechanics, Vol. 23, No. 1, (2020), 81-88. https://doi.org/10.1134/s1029959920010087
  34. Mohammed, A., Yaro, S. A., Abdulwahab, M., “Influence of Ni additions and age-hardening treatment on the corrosion resistance of Al-Cu-Si alloy”, Journal of Materials and Environmental Science, Vol. 7, No. 5, (2016), 1549-1555. https://www.jmaterenvironsci.com/Document/vol7/vol7_N5/170-JMES-948-Mohammed.pdf