Role of Etching Process of SiC Particles on the Microstructure and Mechanical Properties of Stir Casted Al357−SiC Metal matrix Composite

Document Type : Original Research Article

Authors

1 MS, Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

2 Assistant Professor, Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

3 Associate Professor, Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

Abstract

Owing to their high strength-to-weight ratio, aluminum-ceramic composites, are widely used in various industries. In this study, aluminum matrix composite was fabricated with only 2 wt% micron-sized SiC particles as the reinforcing phase using electromagnetic stir casting. Prior to mixing, the surface of SiC particles were chemically etched by HF, NaOH, and KOH at two heat treatment temperatures of 460 and 510 °C for 30 min. The obtained results indicated better wettability and interaction between the etched SiC particles and Al matrix. In addition, etched SiC particle as a ceramic phase at 460 °C enhanced the mechanical properties of Al as a metal matrix, such as enhancing hardness and E about of 6.6 and 26.6%, respectively, mainly due to the increasing inhibition against movement of dislocation confirmed by the observed brittle behavior of fracture surface.

Keywords

Main Subjects


  1.  Surappa, M. K., “Aluminum matrix composites: challenges and opportunities”, Sadhana, Vol. 28, 1-2, (2003), 319-334. https://doi.org/10.1007/BF02717141
  2. Kumar, G. S. P., Koppad, P. G., Keshavamurthy, R., Alipour, M., “Microstructure and mechanical behavior of in situ fabricated AA6061-TiC metal matrix composites”, Archives of Civil and Mechanical Engineering, Vol. 17, No. 3, (2017), 535-544. https://doi.org/10.1016/j.acme.2016.12.006
  3. Murthy, K. S., Girish, D. P., Keshavamurthy, R., Varol, T., Koppad, P. G., “Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging”, Progress in Natural Science: Materials International, Vol. 27, No. 4, (2017), 474-481. https://doi.org/10.1016/j.pnsc.2017.08.005
  4. Ram, H. A., Koppad, P. G., Kashyap, K. T., “Influence of multiwalled carbon nanotubes on the aging behavior of AA 6061 alloy matrix nanocomposites”, Transactions of the Indian Institute of Metals, Vol. 67, No. 3, (2014), 325-329. https://doi.org/10.1007/s12666-013-0350-y
  5. Ebrahimi, M., Zarei-Hanzaki, A., Abedi, H. R., Azimi, M., Mirjavadi, S. S., “Correlating the microstructure to mechanical properties and wear behavior of an accumulative back extruded Al-Mg2Si in-situ composite”, Tribology International, Vol. 115, (2017), 199-211. https://doi.org/10.1016/j.triboint.2017.05.034
  6. Roshan, M. R., Mousavian, T. R., Ebrahimkhani, H., Mosleh, A., “Fabrication of Al-based composites reinforced with Al2O3–TiB2 ceramic composite particulates using vortex-casting method”, Journal of Mining and Metallurgy, Section B: Metallurgy, Vol. 49, No. 3, (2013), 299-305. https://doi.org/10.2298/JMMB120701032R
  7. Valibeygloo, N., Khosroshahi, R. A., Mousavian, R. T., “Microstructural and mechanical properties of Al-4.5 wt% Cu reinforced with alumina nanoparticles by stir casting method”, International Journal of Minerals, Metallurgy, and Materials, Vol. 20, No. 10, (2013), 978-985. https://doi.org/10.1007/s12613-013-0824-2
  8. Mohammadpour, M., Khosroshahi, R. A., Mousavian, R. T., Brabazon, D., “Effect of interfacial-active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum”, Ceramics International, Vol. 40, No. 6, (2014), 8323-8332. https://doi.org/10.1016/j.ceramint.2014.01.038
  9. Mohammadpour, M., Khosroshahi, R. A., Mousavian, R. T., Brabazon, D., “A novel method for incorporation of micron-sized SiC particles into molten pure aluminum utilizing a Co coating”, Metallurgical and Materials Transactions B, Vol. 46, No. 1, (2015), 12-19. https://doi.org/10.1007/s11663-014-0186-9
  10. Naher, S., Brabazon, D., Looney, L., “Development and assessment of a new quick quench stir caster design for the production of metal matrix composites”, Journal of Materials Processing Technology, Vol. 166, No. 3, (2005), 430-439. https://doi.org/10.1016/j.jmatprotec.2004.09.043
  11. Naher, S., Brabazon, D., Looney, L., “Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication”, Composites Part A: Applied Science and Manufacturing, Vo. 38, No. 3, (2007), 719-729. https://doi.org/10.1016/j.compositesa.2006.09.009
  12. Mousavian, R. T., Damadi, S. R., Khosroshahi, R. A., Brabazon, D., Mohammadpour, M., “A comparison study of applying metallic coating on SiC particles for manufacturing of cast aluminum matrix composites”, The International Journal of Advanced Manufacturing Technology, Vol. 81, No. 1, (2015), 433-444. https://doi.org/10.1007/s00170-015-7246-4
  13. Boostani, A. F., Tahamtan, S., Jiang, Z. Y., Wei, D., Yazdani, S., Khosroshahi, R. A., Mousavian, R. T., Xu, J., Zhang, X., Gong, D., “Enhanced tensile properties of aluminum matrix composites reinforced with graphene encapsulated SiC nanoparticles”, Composites Part A: Applied Science and Manufacturing, Vol. 68, (2015), 155-163. https://doi.org/10.1016/j.compositesa.2014.10.010
  14. Ray, S., “Synthesis of cast metal matrix particulate composites”, Journal of Materials Science, Vol. 28, No. 20, (1993), 5397−5413. https://doi.org/10.1007/BF00367809
  15. Lloyd, D. J., “Particle reinforced aluminium and magnesium matrix composites”, International Materials Reviews, Vol. 39, No. 1, (1994), 1−23. https://doi.org/10.1179/imr.1994.39.1.1
  16. Song, M., “Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites”, Transactions of Nonferrous Metals Society of China, Vol. 19, No. 6, (2009), 1400-1404. https://doi.org/10.1016/S1003-6326(09)60040-6
  17. El-Sabbagh, A. M., Soliman, M., Taha, M. A., Palkowski, H., “Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting”, Journal of Materials Processing Technology, Vol. 213, No. 10, (2013), 1669-1681. https://doi.org/10.1016/j.jmatprotec.2013.04.013
  18. Seo, Y. H., Kang, C. G., “Effects of hot extrusion through a curved die on the mechanical properties of SiCp/Al composites fabricated by melt-stirring”, Composites Science and Technology, Vol. 59, No. 5, (1999), 643-654. https://doi.org/10.1016/S0266-3538(98)00123-7
  19. Xu, Y., Chung, D. D. L., “Low-volume-fraction particulate preforms for making metal-matrix composites by liquid metal infiltration”, Journal of Materials Science, Vol. 33, No. 19, (1998), 4707-4709. https://doi.org/10.1023/a:1004480819365
  20. Naher, S., Brabazon, D., Looney, L., “Simulation of the stir casting process”, Journal of Materials Processing Technology, Vol. 143-144, (2003), 567-571. https://doi.org/10.1016/S0924-0136(03)00368-6
  21. Seo, Y. H., Kang, C. G., “The effect of applied pressure on particle-dispersion characteristics and mechanical properties in melt-stirring squeeze-cast SiCp/Al composites”, Journal of Materials Processing Technology, Vol. 55, No. 3-4, (1995), 370-379. https://doi.org/10.1016/0924-0136(95)02033-0
  22. Skibo, M., Morris, P. L., Lloyd, D. J., “Structure and properties of liquid metal processed SiC reinforced aluminium”, In Cast Reinforced Metal Composites: Proceedings of the International Symposium on Advances in Cast Reinforced Metal Composites Held in Conjunction with the 1988 World Materials Congress, Fishman, S. G. and Dhingra, A. K. (eds.), Chicago, Illinois, 24-30 September 1988, USA: ASM International, (1988), 257-261. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.997.7513&rep=rep1&type=pdf#page=253
  23. Arima, K., Hara, H., Murata, J., Ishida, T., Okamoto, R., Yagi, K., Sano, Y., Mimura, H., Yamauchi, K., “Atomic-scale flattening of SiC surfaces by electroless chemical etching in HF solution with Pt catalyst”, Applied Physics Letters, Vol. 90, No. 20, (2007), https://doi.org/10.1063/1.2739084
  24. Weyher, J. L., “Characterization of wide-band-gap semiconductors (GaN, SiC) by defect-selective etching and complementary methods”, Superlattices and Microstructures, Vol. 40, No. 4-6, (2006), 279-288. https://doi.org/10.1016/j.spmi.2006.06.011
  25. Van Dorp, D. H., Weyher, J. L., Kelly, J. J., “Anodic etching of SiC in alkaline solutions”, Journal of Micromechanics and Microengineering, Vol. 17, No. 4, (2007), S50. https://doi.org/10.1088/0960-1317/17/4/S04
  26. P. Y., Zhao, H. D., Chen, F. F., Li, J. W., “Microstructures and properties of A356–10% SiC particle composite castings at different solidification pressures”, Transactions of Nonferrous Metals Society of China, Vol. 23, No. 8, (2013), 2222-2238. https://doi.org/10.1016/S1003-6326(13)62721-1
  27. Kumar, M. S., Begum, S. R., Pruncu, C. I., Asl, M. S., “Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al–SiC composites”, Journal of Alloys and Compounds, Vol. 869, (2021), 159250. https://doi.org/10.1016/j.jallcom.2021.159250
  28. Sharma, A., Rastogi, V., Agrawal, A. K., “Multi-parametric optimisation by quantitative assessment of distribution index and area fraction of composite”, Practical Metallography, Vol. 57, No. 9, (2020), 588–613. https://doi.org/10.3139/147.110636
  29. Zhang, W. Y., Du, Y. H., Zhang, P., “Vortex-free stir casting of Al-1.5 wt% Si–SiC composite”, Journal of Alloys and Compounds, Vol. 787, (2019), 206–215. https://doi.org/10.1016/j.jallcom.2019.02.099
  30. Sahu, M. K., Valarmathi, A., Baskaran, S., Anandakrishnan, V., Pandey, R. K., “Multi- objective optimization of upsetting parameters of Al–TiC metal matrix composites: A grey Taguchi approach”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 228, No. 11, (2014), 1501–1507. https://doi.org/10.1177/0954405413519434
  31. Dutta, S., Narala, S. K. R., “Experimental investigation to study the effects of processing parameters on developed novel AM (Al–Mn) series alloy”, Materials and Manufacturing Processes, Vol. 35, No. 16, (2020), 1842-1851. https://doi.org/10.1080/10426914.2020.1813889
  32. Kumar, A., Kumar, P., Singh, R. C., “The effect of alumina on mechanical behavior of Al 6064 alloy”, In IOP Conference Series: Materials Science and Engineering, Vol. 802, No. 1, (2020), 012004. https://doi.org/10.1088/1757-899X/802/1/012004
  33. Amirkhanlou, S., Niroumand, B., “Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique”, Materials Science and Engineering: A, Vol. 528, No. 24, (2011), 7186-7195. https://doi.org/10.1016/j.msea.2011.06.013
  34. Balaji, V., Sateesh, N., Hussain, M. M., “Manufacture of aluminium metal matrix Composite (Al7075-SiC) by Stir Casting Technique”, Materials Today: Proceedings, Vol. 2, No. 4-5, (2015), 3403-3408. https://doi.org/10.1016/j.matpr.2015.07.315
  35. Orlowicz, W., Tupaj, M., Mróz, M., Betlej, J., Ploszaj, F., “Effect of refining process on porosity and mechanical properties of high pressure Al-Si alloy die casting”, Iranian Journal of Materials Science and Engineering, Vol. 9, No.1, (2012), 1-10. http://ijmse.iust.ac.ir/article-1-409-en.html
  36. Cioffi, F., Ibáñez, J., Fernández, R., González-Doncel, G., “The effect of lateral off-set on the tensile strength and fracture of dissimilar friction stir welds, 2024Al alloy and 17% SiC/2124Al composite”, Materials & Design (1980-2015), Vol. 65, (2015), 438-446. https://doi.org/10.1016/j.matdes.2014.09.042
  37. Li, X. P., Liu, C. Y., Ma, M. Z., Liu, R. P., “Microstructures and mechanical properties of AA6061–SiC composites prepared through spark plasma sintering and hot rolling”, Materials Science and Engineering: A, Vol. 650, (2016), 139-144. https://doi.org/10.1016/j.msea.2015.10.015