Electro-Synthesis of Cu-Nb Nanocomposites; Toward Novel Alloying of Immiscible Bimetals


1 Semiconductors Department, Materials and Energy Research Center (MERC)

2 Semiconductor, Merc

3 Semiconductors, MERC


Immiscible metals due to their inherent specs are insoluble over the steady state. Developing an innovative approach to this issue would be fascinating and challenge the overriding rules. Herein, we proffer the principles of synthesis of Cu-Nb nanocomposites using electrochemical deoxidation route. This method consists of the cathodic electrolysis of the nanoparticles Cu-Nb2O5 through the molten salt electrolyte medium; which lead to the oxygen-free nanocomposites following the reduction of Nb2O5 and atomic translocation of Cu/Nb. Analysis of as-synthesized specimens by X-ray diffraction implies the Nb2O5 is reduced into Nb and all reflections of Cu are shifted to low-angles. Moreover, elemental analysis by energy dispersive spectrometry (EDS) illustrates the high solubility of Nb in Cu and Cu in Nb structure, which their crystallinity is consistent with the XRD. These findings confirm the electro-synthesis is a key technique for reduction of nanometer oxides, the substantial increase of solubility, and nano-alloying of immiscible metals.


Main Subjects

1. Smalley, R.E., "Nanotech growth", R&D Magazine, vol. 41, No. 7, (1999), 34-37.
2. Eugene, V., Trends in Nanotechnology Research, Dirote, Nova sciece pubishers,Inc, (2004).
3. Gogotsi, Y., Nanomaterials handbook, CRC Press, Taylor & Francis Group, (2006)
4. Olson, G.B., "Designing a new material world", Science, vol. 288 (5468), (2000), 993-998.
5. Good, M., "Designer materials", R&D Magazine, vol. 41, (1999), 76-77.
6. Arunachalam, V.S., "Materials Challenges for the Next Century", MRS Bulletin, Vol. 25, (2000), 55-56.
7. Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J. M., Schalkwijk,W., "Nanostructured materials for advanced energy conversion and storage devices", Nature Materials, vol. 4, (2005), 366-377.
8. Maynard, A. Bowman, D., Hodge, G., "The problem of regulating sophisticated materials", Nature Materials, vol. 10, (2011), 554-557.
9. Nie, Z., Petukhova, A., Kumacheva, E., "Properties and emerging applications of self-assembled structures made from inorganic nanoparticles", Nature Nanotechnology, Vol. 5, (2010), 15-25.
10. Lee, I., Hana, S.W., Kim, K., "Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys", Chemical Communications, Vol. 18, (2001), 1782-1783.
11. Letvin, M.S., Science, Vol. 312, (5780), (2006),1575b-1575b.
12. Amendola, V., Meneghetti, M., Bakr, O.M., Riello, P., Polizzi, S., Anjum,, D.H., Fiameni, S., Arosio,, P., Orlando, T., Fernandez, C.J., Pineider, F., Sangregorioj, C., Lascialfari, A., "Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys", Nanoscale, Vol. 5, (2013), 5611-5619.
13. Jakobi, J., Menéndez-Manjón, A., Chakravadhanula, V.S., Kienle, L., Wagener, P., Barcikowski, S., "Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes", Nanotechnology, Vol. 22, (2011),145601.
14. Gordon, E., Karabulin, A., Matyushenko, V., Sizov, V., Khodos, I., "Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium", Physical Chemistry Chemical Physics, Vol. 16, (2014), 25229-25233.
15. Guisbiers, G., Mejia-Rosales, S., Khanal, S., Ruiz-Zepeda, F., Whetten, R.L., José-Yacaman, M., "Gold–Copper Nano-Alloy, "Tumbaga", in the Era of Nano: Phase Diagram and Segregation", Nano Letters, Vol. 14 (11), (2014), 6718-6726.
16. Swiatkowska-Warkocka, Z., Pyatenko, A., Krok, F.; Jany, B. R., Marszalek, M., "Synthesis of new metastable nanoalloys of immiscible metals with a pulse laser technique", Vol. 8, (2015), 9849.
17. Hoistad, M.L., Lee, S., "The Hume-Rothery electron concentration rules and second moment scaling", Journal of the American Chemical Society, Vol.113, (1991), 8216-8220.
18. Weissmuller, J., Bunzel, P., Wilde, G., "Two-phase equilibrium in small alloy particles", Scripta Materialia, Vol. 51, (2004), 813-818.
19. Lin, Q., Corbett D., J., "Development of the Ca− Au− In Icosahedral Quasicrystal and Two Crystalline Approximants: Practice via Pseudogap Electronic Tuning", Journal of the American Chemical Society, Vol. 129, (2007), 6789–6797.
20. Herlach, D.M., Phase Transformations in Multicomponent Melts, (WILEY-VCH Verlag GmbH & Co. KGaA, 2008). 97-105.
21. Spitzig, W.A., "Strengthening in heavily deformation processed Cu-20% Nb", Acta Metallurgica et Materialia, Vol. 39, (1991), 1085-1090.
22. Raabe, D., Heringhaus, F., HanKen, U., Gottstein, G. Z., "Investigation of a Cu-20 mass% Nb in situ Composite, Part I: Fabrication, Microstructure and Mechanical Properties", Metallkd., Vol. 86, (1995), 405-415.
23. Heringhaus, F., Raabe, D., Gottstein, G., "On the correlation of microstructure and electromagnetic properties of heavily cold worked Cu-20 wt% Nb wires", Acta Materialia, Vol. 43, (1995), 1467-1476.
24. Lin, Q., Corbett, J.D., "Development of the Ca− Au− In Icosahedral Quasicrystal and Two Crystalline Approximants: Practice via Pseudogap Electronic Tuning", Journal of the American Chemical Society, Vol. 129, (2007), 6789-6797.
25. Degtyarenko, P.N., Ivanov, A.S., Kruglov, V.S., Voloshin, I.F., "Superconductivity in Cu-Nb with extremely fine structure", Journal of Physics Conference Series, Vol. 97, (2008), 012024.
26. Botcharova, E., Freudenberger, J., Schultz, L. "Cu–Nb alloys prepared by mechanical alloying and subsequent heat treatment", Journal of Alloys and Compounds, Vol. 365, (2004), 157–163.
27. Botcharova, E., Freudenberger, J., Gaganov, A., Khlopkov, K., Schultz, L., "Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys", Acta Materialia, Vol. 54, (2006), 3333-3341.
28. Munitz, A., Bamberger, V.M., Landau, A., Abbaschian P.R., "Phase selection in supercooled Cu–Nb alloys", Journal of Materials Science, Vol. 44,(2009), 64-73.
29. Demkowicz, M.J., Hoagland, R.G., Hirth, J.P., "Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites", Physical Review Letters, Vol. 100, (2008), 136102.
30. Zhu, X.Y., Luo, J.T., Zeng, F., Pan, F., "Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers",Thin Solid Films, Vol. 520, (2011), 818-823.
31. GÅ‚uchowski, W., Stobrawa, J.P., Rdzawski, Z.M, Marszowski, K., "Microstructural characterization of high strength high conductivity Cu-Nb microcomposite wires", Journal of Achievements in Materials and Manufacturing Engineering, Vol. 46, (2011), 40-48.
32. Vidal, V., Thilly, L., Petegem, S.V., Stuhr, U., Lecouturier, F., Renault, P.-O., Swygenhoven, H.V., "Plasticity of nanostructured Cu–Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons", Scripta Materialia, Vol. 60, (2009), 171–174.
33. Demkowicz, M.J., Thilly, L., “Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation”, Acta Materialia, Vol. 59, (2011), 7744–7756.
34. Carpenter, J. S., Zheng, S. J., Zhang, R.F., Vogel, S. C., Beyerlein, I. J., Mara, N. A., "Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding", Philosophical Magazine, Vol. 93, (2013), 718-735.
35. Deng, L., Han, K., Hartwig, K. T., Siegrist, T. M., Dong, L., Sun, Z., Yang, X., Liu, Q., “Hardness, electrical resistivity, and modeling of in situ Cu–Nb microcomposites”, Journal of Alloys and Compounds, Vol. 602, (2014), 331-338.
36. Nizolek, T., Mara, N. A., Beyerlein, I. J., Avallone, J. T., Scott, J. E., Pollock, T. M., “Processing and deformation behavior of bulk Cu–Nb nanolaminates”, Metallography, Microstructure, and Analysis, Vol. 3, No. 6, (2014), 470-476.
37. Abad, M. D., Parker, S., Kiener, D., Primorac, M. M., “Microstructure and mechanical properties of CuxNb1− x alloys prepared by ball milling and high pressure torsion compacting”, Journal of Alloys and Compounds, Vol. 630, (2015), 117–125
38. Kim, G., Chai, X., Yu, L., Cheng, X., Gianola, D. S., “Interplay between grain boundary segregation and electrical resistivity in dilute nanocrystalline Cu alloys”, Scripta Materialia, Vol. 123, (2016), 113-117
39. Chen, G. Z., Fray, D. J., Farthing, T. W., “Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride”, Nature, Vol. 407, No. 6802, (2000), 361-363
40. Fray, D. J., Chen, G. Z., “Metal and alloy powders and powder fabrication”, U. S. Patent Application 10/416,910., filed March 18, (2004).
41. Nohira, T., Yasuda, K., Ito, Y., “Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon”, Nature materials, Vol. 2, No. 6, (2003), 397-401
42. Wang, D., Qiu, G., Jin, X., Hu, X., Chen, G. Z., “Electrochemical metallization of solid terbium oxide”, Angewandte Chemie International Edition, Vol. 45, No. 15, (2006), 2384–2388
43. Muir Wood, A. J., Copcutt, R. C., Chen, G. Z., Fray, D. J., “Electrochemical fabrication of nickel manganese gallium alloy powder”, Advanced Engineering Materials, Vol. 5, No. 9, (2003), 650–653
44. Glowacki. B. A., Fray, D. J., Yan, X. Y., Chen, G., “Superconducting Nb3Sn intermetallics made by electrochemical reduction of Nb2O5–SnO2 oxides”, Physica C: Superconductivity, Vol. 387, No. 1-2, (2003), 242–246
45. Zhu, Y., Ma, M., Wang, D., Jiang, K., Hu, X., Jin, X., Chen, G. Z., “Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy”, Chinese Science Bulletin, Vol. 51, No. 20, (2006), 2535-2540.
46. Jiang, Q., Zhang, S. H., Li, J. C., “Grain size-dependent diffusion activation energy in nanomaterials”, Solid State Communications, Vol. 130, No. 9, (2004), 581-584.
47. Kang, X., Xu, Q., Yang, X., Song, Q., “Electrochemical synthesis of CeNi4Cu alloy from the mixed oxides and in situ heat treatment in a eutectic LiCl–KCl melt”, Materials Letters, Vol. 64, No. 20, (2010), 2258-2260
48. Yan, X. Y., Fray, D. J., “ Production of niobium powder by direct electrochemical reduction of solid Nb2O5 in a eutectic CaCl2-NaCl melt”, Metallurgical and Materials Transactions B, Vol. 33, (2002), 685-693
49. Shokrvash, H., Yazdani rad, R., Massoudi, A., “An Innovative Electrolysis Approach for the Synthesis of Metal Matrix Bulk Nanocomposites: A Case Study on Copper-Niobium System”, Metallurgical and Materials Transactions A, Vol. 49, No. 4, (2018), 1355–1362
50. Song, Q. S., Xu, Q., Tao, R., Kang, X., “Cathodic Phase Transformations During Direct Electrolytic Reduction of Nb2O5 in a CaCl2–NaCl–CaO melt, International Journal of Electrochemical Science, Vol. 7, (2012), 272-281.