Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study


1 Materials and Energy Research Center (MERC), Karaj, Alborz, Iran

2 Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)

3 Department of Ceramic, Materials and Energy Research Center (MERC)

4 Department of Energy; Materials and energy Research Center (MERC)


With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetric Ni–GDC20|GDC20|Pt electrolyte-supported cell at a temperature range of 400 to 600 °C. Microstructural refinement was studied by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques in comparison to the bare anode before and after hydrogen reduction at 600 °C and also after anodic performance test. Nanostructuring Pt-nanoparticles with an average particle size of 12.5 nm on Ni/GDC20 anode indicated the lack of electrocatalytic enhancement with the addition of platinum for H2 oxidation reaction in LT-SOFC.


Main Subjects

  1. Torknik, F. S., Keyanpour-Rad, M., Maghsoudipour, A., Choi, G. M., “Effect of microstructure refinement on performance of Ni/Ce0.8Gd0.2O1.9 anodes for low temperature solid oxide fuel cell”, Ceramics International, Vol. 40, No. 1, (2014), 1341-1350.
  2. Chueh, W. C., Hao, Y., Jung, W., Haile, S. M., "High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes", Nature materials, Vol. 11, No. 2. (2012), 155.
  3. Ni M., Zhao T. S. (Eds.), “Solid Oxide Fuel Cells: From Materials to System Modeling”, Cambridge: Royal Society of Chemistry, (2013).
  4. Reszka, A. J., Snyder, R. C., Gross, M. D., "Insights into the design of SOFC infiltrated electrodes with optimized active TPB density via mechanistic modeling", Journal of The Electrochemical Society, Vol. 161, No. 12, (2014), F1176-F1183.
  5. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G., Barnett, S. A., "A perspective on low-temperature solid oxide fuel cells", Energy & Environmental Science, Vol. 9, No. 5, (2016), 1602-1644.
  6. Torknik, F. S., Maghsoudipour, A., Keyanpour-Rad, M., Choi, G. M., Oh, S. H., Shin, G. Y., "Microstructural refinement of Ni/Ce0.8Gd0.2O2−δ anodes for low-temperature solid oxide fuel cell by wet infiltration loading of PdCl2", Ceramics International, Vol. 40, No. 8, (2014), 12299-12312.
  7. Torknik, F. S., Keyanpour-Rad, M., Maghsoudipour, A., Choi, G. M., "Effect of rhodium infiltration on the microstructure and performance of Ni/Ce0.8Gd0.2O2-δ cermet anode for low temperature solid oxide fuel cell", Iranian Journal of Materials Science and Engineering, Vol. 13, No. 1, (2016), 43-49.
  8. Li, P., Yu, B., Li, J., Yao, X., Zhao, Y., Li, Y., "Improved activity and stability of Ni-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol through addition of molybdenum", Journal of Power Sources, Vol. 320, (2016), 251-256.
  9. Liu, Z., Ding, D., Liu, B., Guo, W., Wang, W., Xia, C., "Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells", Journal of Power Sources, Vol. 196, No. 20, (2011), 8561-8567.
  10. Yoon, H. S., Gore, C. M., Lidie, A. A., Lee, K. T., Wachsman, E. D., "Process Integration for Scale-Up of Ce0.9Gd0.1O1.95 Electrolyte-Based LT-SOFCs", In Meeting Abstracts, The Electrochemical Society, (2012), No. 16, 1976-1976.
  11. Li, M., Hua, B., Luo, J. L., Jiang, S. P., Pu, J., Chi, B., Li, J., “Enhancing sulfur tolerance of Ni-based cermet anodes of solid oxide fuel cells by ytterbium-doped barium cerate infiltration", ACS applied materials & interfaces, Vol. 8, No. 16, (2016), 10293-10301.
  12. Steele, B. C., Heinzel, A., “Materials for fuel-cell technologies”, Nature, Vol. 414, (2001), 345-352.
  13. Litster, S., McLean, G., "PEM fuel cell electrodes", Journal of Power Sources, Vol. 130, No. 1-2, (2004), 61-76.
  14. Holton, O. T., & Stevenson, J. W., "The role of platinum in proton exchange membrane fuel cells", Platinum Metals Review, Vol. 57, No. 4, (2013), 259-271.
  15. Chao, C. C., Motoyama, M., Prinz, F. B., "Nanostructured Platinum Catalysts by Atomic‐Layer Deposition for Solid‐Oxide Fuel Cells", Advanced Energy Materials, Vol. 2, No. 6, (2012), 651-654.
  16. O'Hayre, R., Cha, S. W., Colella, W., Prinz, F. B., “Fuel Cell Fundamentals”, Hoboken, NJ: J. Wiley & Sons,(2009), 237.
  17. Hussain, A. M., Høgh, J. V., Zhang, W., Bonanos, N., "Efficient ceramic anodes infiltrated with binary and ternary electrocatalysts for SOFCs operating at low temperatures", Journal of Power Sources, Vol. 216, (2012), 308-313.
  18. Price, R., Cassidy, M., Schuler, J. A., Mai, A., Irvine, J. T., "Development and Testing of Impregnated La0.20Sr0.25Ca0.45TiO3 Anode Microstructures for Solid Oxide Fuel Cells", ECS Transactions, Vol. 78, No. 1, (2017), 1385-1395.
  19. Birss, V. I., Chang, M., Segal, J., “Platinum oxide film formation—reduction: an in-situ mass measurement study”, Journal of Electroanalytical Chemistry, Vol. 355, No. 1-2, (1993), 181-191.
  20. Moulijn, J. A., Van Diepen, A. E., Kapteijn, F., “Catalyst deactivation: is it predictable?: What to do?”, Applied Catalysis A: General, Vol. 212, No. 1-2, (2001), 3-16.
  21. Bernardi, F., Alves, M. C., Morais, J., “Monitoring of Pt nanoparticle formation by H2 reduction of PtO2: an in situ dispersive x-ray absorption spectroscopy study”, The Journal of Physical Chemistry C, Vol. 114, No. 49, (2010), 21434-21438.
  25. Barin, I., Platzki, G., “Thermochemical data of pure substances”, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, New York, (1995).
  26. Kleitz, M., Petitbon, F., “Optimized SOFC electrode microstructure”, Solid State Ionics, Vol. 92, No. 1-2, (1996), 65-74.