Synthesis of a Macroporous Glass-Ceramic Scaffold Containing Fluorapatite Crystalline Phase for Bone Substitutes

Document Type : Original Research Article

Authors

1 Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 Histology and Embryology Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

Bioactive glass-ceramics play an important role in bone tissue regeneration. In the present research, the crystallization of glasses and scaffold fabrication were investigated. After choosing the appropriate composition in the SiO2-CaO-Na2O-p 2O5 system, raw materials were melted at 1400  and then, quenched in water. Subsequently, the crystallization of synthesized glass samples was studied. Fourier Transfer infrared (FT-IR) spectroscopy was carried out to study the structural changes of the samples. XRD patterns showed that fluorapatite Ca10(PO4)6(O,F2) was the only precipitated crystalline phase. The template synthesis method was applied for the fabrication of the scaffold and starch as a porogen material. The optimized scaffold structure was chosen with the appropriate size of pores, interconnectivity, and strength behavior through investigating the porosity, SEM images, and mechanical properties. ICP, SEM, and EDX analyses were used to determine the in vitro bioactivity of the samples after immersion for 14 days in SBF.

Keywords

Main Subjects


  1.  

    1. Bravarone, C. V., Verné, E., Appendino , P., “Macroporous bioactive glass-ceramic scaffolds for tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol. 17, No. 11, (2006), 1069-1078. https://doi.org/10.1007/s10856-006-0533-8
    2. Mortera, R., Onida, B., Fiorilli, S., Cauda, V., Bravarone, C. V., Baino, F., Verné, E., Garrone, E., “Synthesis and Characterization of MCM-41 spheres inside bioactive glass-ceramic scaffold”, Chemical Engineering Journal, Vol. 137, No. 1, (2008), 54-61. https://doi.org/10.1016/j.cej.2007.07.094
    3. Renghini, C., Komlev, V., Fiori, F., Verné, E., Baino, F., Vitale-Brovarone, C., “Micro-CT studies on 3-D bioactive glass–ceramic scaffolds for bone regeneration”, Acta Biomaterialia,Vol. 5, No. 4, (2009), 1328-1337. https://doi.org/10.1016/j.actbio.2008.10.017
    4. Vitale Bravarone, C., Baino, F., Verné, E., “Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting”, Journal of Biomaterials Applications, Vol. 24, No. 8, (2010), 693-712. https://doi.org/10.1177/0885328209104857
    5. Jones, J. R., Hench, L. L., “Bioactive 3D scaffolds in regenerative medicine: the role of interface interactions” In Surfaces and Interfaces for Biomaterials, Woodhead Publishing, (2005), 545-572. https://doi.org/10.1533/9781845690809.4.545
    6. Jone, J. R., “Review of bioactive glass: From hench to hybrids”, Acta Biomaterialia, Vol. 9, No. 1, (2013), 4457-4486. https://doi.org/10.1016/j.actbio.2012.08.023
    7. Vitale-Bravarone, C., Baino, F., Miola, M., Mortera, R., Onida, B., verné, E., “Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery”, Journal of Materials Science: Materials in Medicine, Vol. 20, No. 3, (2009), 809-820. https://doi.org/10.1007/s10856-008-3635-7
    8. El-Meleigy, E., Van Noort, R., Glasses and Glass Ceramics for Medical Application, Springer science & business media, New York, (2012). https://doi.org/10.1007/978-1-4614-1228-1
    9. Anand, V., Singh, K. J., Kaur, K., “Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer”, Journal of Non-Crystalline solids, Vol. 406, (2014), 88-94. https://doi.org/10.1016/j.jnoncrysol.2014.09.050
    10. Gerhardt, L. C., Boccaccini, A. R., “Bioactive glass and glass-ceramic scaffolds for bone tissue engineering”, Materials, Vol. 3, No. 7, (2010), 3867-3910. https://doi.org/10.3390/ma3073867
    11. Kansal, I., Goal, A., Tulyaganov, D. U., Rajagopal, R. R., Ferreira, José M. F., “Structural and thermal characterization of CaO–MgO–SiO2–P2O5–CaF2 glasses”, Journal of the European Ceramic Society, Vol. 32, No. 11, (2012), 2739-2746. https://doi.org/10.1016/j.jeurceramsoc.2011.10.041
    12. Wu, C., Chang, J., “Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application”, Interface Focus, Vol. 2, No. 3, (2012), 292-306. https://doi.org/10.1098/rsfs.2011.0121
    13. Bellucci, D., Cannillo, V., Sola, A., Chiellini, F., Gazzarri, M., Migone, C., “Macroporous bioglass®-derived scaffolds for bone tissue regeneration”, Ceramics International, Vol. 37, No. 5, (2011), 1575-1585. https://doi.org/10.1016/j.ceramint.2011.01.023
    14. Bellucci, D., Sola, A., Cannillo, V., “Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds”, Materials Science and Engineering: C, Vol. 33, No. 4, (2013), 2138-2151. https://doi.org/10.1016/j.msec.2013.01.029
    15. Fiorilli, S., Baino, F., Cauda, V., Crepaldi, M., Vitale-Bravarone, C., Demarchi, D., Onida, B., “Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol. 26, No. 1, (2015), 21. https://doi.org/10.1007/s10856-014-5346-6
    16. Adams, L. A., Essien, E. R., Adesalu, A. T., Julius, M. L., “Bioactive glass 45S5 from diatom biosilica”, Journal of Science: Advanced Materials and Devices, Vol. 2, No. 4, (2017), 476-482. https://doi.org/10.1016/j.jsamd.2017.09.002
    17. Hench, L. L., Wilson, J., An Introduction to Bioceramics, advanced series in ceramics, Vol. 1, Singapore: World Scientific, (1993). https://doi.org/10.1142/2028
    18. Peitl, O., Zanotto, E. D., Serbena, F. C., Hench, L. L., “Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics”, Acta Biomaterialia, Vol. 8, No. 1, (2012), 321-332. https://doi.org/10.1016/j.actbio.2011.10.014
    19. Clupper, D. C., Hench, L. L., Mecholsky, J. J., “Strength and toughness of tape cast bioactive glass 45S5 following heat treatment”, Journal of the European Ceramic Society, Vol. 24, No. 10-11, (2004), 2929-2934. https://doi.org/10.1016/s0955-2219(03)00363-7
    20. Du, R., Chang, J., “Preparation and characterization of bioactive sol-gel-derived Na2Ca2Si3O9”, Journal of Materials Science: Materials In Medicine, Vol. 15, No. 12, (2004), 1285-1289. https://doi.org/10.1007/s10856-004-5736-2
    21. Lefebvre, L., Chevalier, J., Gremillard, L., Zenati, R., Thollet, G., Bernache-Assollant, D., Govin, A., “Structural transformations of bioactive glass 45S5 with thermal treatments”, Acta Materialia, Vol. 55, No. 10, (2007), 3305-3313. https://doi.org/10.1016/j.actamat.2007.01.029
    22. Ji, L., Si, Y., Li, A., Wang, W., Qiu, D., Zhu, A., “Progress of three-demensional macroporous bioactive glass for bone regeneration”, Frontiers of Chemical Science and,  Engineering, Vol. 6, No. 4, (2012), 470-483.https://doi.org/10.1007/s11705-012-1217-1
    23. Kokubo, T., Takadama, H., “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials, Vol. 27, No. 15, (2006), 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
    24. Allahgoliyane, E., Rezvani, M., “Investigating the affect Factors in Manufacturing process of Porous Ceramic Glass Containing Crystalline Fluorapatite”, In 12th ICERS Congress Proceedings, Iran, 30th April & 1st May 2019, Iranian Ceramic Society,(2019).
    25. Farahinia, L., Rezvani, M., Alahgoliyan, E., “Optical characterization of oxyfluoride glasses containing different amounts of K2O additive”, Materials Research Bulletin, Vol. 70, (2015), 461-467. https://doi.org/10.1016/j.materresbull.2015.05.015
    26. Tahvildari, K., Esmaeili Pour, M., Ghammamy, S., Nabipour, H., “CaF2 Nanoparticles: Synthesis and characterization”, International Journal of Nano Dimension, Vol. 2, No. 4, (2012), 269-273. https://doi.org/10.7508/ijnd.2011.04.008
    27. Peitl, O., Zanotto, E. D., Hench, L. L., “Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics”, Journal of Non-Crystalline Solids, Vol. 292, No. 1-3, (2001), 115-126. https://doi.org/10.1016/s0022-3093(01)00822-5
    28. Ghomi, H., Fathi, M. H., Edris, H., “Fabrication and characterization of bioactive glass/hydroxyapatite nanocomposite foam by gelcasting method”, Ceramics International, Vol. 37, No. 6, (2011), 1819-1824. https://doi.org/10.1016/j.ceramint.2011.03.002
    29. Majhi, M. R., Pyare, R., Singh, S. P., “Studies on preparation and characterizations of CaO-Na2O-SiO2-P2O5 bioglass-ceramics substituted with Li2O, K2O, ZnO, MgO, and B2O3”, International Journal of Scientific & Engineering Research, Vol. 2, No. 9, (2011), 1-9. https://www.ijser.org/paper/Studies_on_preparation_and_characterizations.html
    30. Doweidar, H., El-Damrawi, G., Mansour, E., Fetouh, R. E., “Structural role of MgO and PbO in MgO-PbO-B2O3 glasses as revealed by FT-IR: a new approach”, Non-Crystalline Solids, Vol. 358, No. 5, (2012), 941-946. https://doi.org/10.1016/j.jnoncrysol.2012.01.004
    31. Thompson, I. D., Hench, L. L., “Mechanical properties of bioactive glasses, glass-ceramics and composites”, Proceedings of the Institution of Mechanical Engineers,Part H: Journal of Engineering in Medicine, Vol. 212, No. 2, (1998), 127-136. https://doi.org/10.1243/0954411981533908
    32. Crovace, M. C., Souza, M. T., Chinaglia, C. R., Peitl, O., Zanotto, E. D., “Biosilicate® - A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials”, Journal of Non-Crystalline Solids, Vol. 432, (2016), 90-110. https://doi.org/10.1016/j.jnoncrysol.2015.03.022
    33. Vyas, V. K., Kumar, A. S., Singh, S. P., Pyare, R., “Effect of nickel oxide substitution on bioactivity and mechanical properties of bioactive glass”, Bulletin of Materials Science, Vol. 39, No. 5, (2016), 1355-1361. https://doi.org/10.1007/s12034-016-1242-7
    34. Jones, J. R., Sepulveda, P., Hench, L. L., “Dose-dependent behavior of bioactive glass dissolution”, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 58, No. 6, (2001), 720–726. https://doi.org/10.1002/jbm.10053
    35. Oliveira, J. M., Correia, R. N., Fernandes, M. H., “Surface modifications of a glass and a glass-ceramic of the MgO–3CaO-P2O5–SiO2 system in a simulated body fluid”, Biomaterials, Vol. 16, No. 11, (1995), 849–854. https://doi.org/10.1016/0142-9612(95)94146-c
    36. Karlsson, K. H., Fröberg, K., Ringbom, T., “A structural approach to bone adhering of bioactive glasses”, Journal Non-Crystal Solids, Vol. 112, No. 1-3, (1989), 69–72. https://doi.org/10.1016/0022-3093(89)90495-x
    37. Zhang, H., Ye, X. J., Li, J. S., “Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds”, Biomedical Materials, Vol. 4, No. 4, (2009), 045007. https://doi.org/10.1088/1748-6041/4/4/045007
    38. Tilocca, A., Cormack, A. N., de Leeuw, N. H., “The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations”, Faraday Discussions, Vol. 136, (2007), 45-55. https://doi.org/10.1039/b617540f
    39. Baino, F., Verné, E., Vitale-Brovarone, C., “Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol. 20, No. 11, (2009), 2189-2195. https://doi.org/10.1007/s10856-009-3787-0
    40. Hashmi, M. U., Shah, A. S., Elkady, A. S., “Effect of sintering time on crystallization, densification and in-vitro characteristics of bioactive glass ceramics”, International Journal of Engineering Science and Innovative Technology, Vol. 3, No. 1, (2014), 368-377. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1047.2168&rep=rep1&type=pdf