Studying the Effects of Nano Sintering Additives on Microstructure and Electrical Properties of Potassium-Sodium Niobate Piezoceramics

Document Type : Original Research Article

Authors

1 Department of Materials Science and Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran

2 Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

3 Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

Abstract

In this paper, lead free (K0.48,Na0.52)NbO3 (KNN(48-52)) piezoelectric ceramics were made by the conventional solid- state sintering process. In order to decrease the sintering temperature and modify the dielectric, piezoelectric and ferroelectric properties, sintering additives of nano ZnO (n-ZnO), nano CuO (n-CuO) and nano SnO2 (n-SnO2) were used. Phase structure and microstructure were analyzed by using X-ray diffractometry and scanning electron microscopy techniques, and the EDX analysis was used to study the ZnO distribution at grains and grain boundaries. The highest piezoelectric constant of d33= 150 pC/N was obtained for KNN(48-52) with 0.6 mol% n-ZnO at a sintering temperature of 1070°C, which is two times larger than the pure KNN(48-52) at the sintering temperature of 1112 °C. Additionally, the KNN(48-52) ceramics co-doped with 0.8 mol% n-ZnO, 0.5 mol% n-CuO and 0.8 mol% n-SnO2, showed dielectric and piezoelectric properties of d33= 97 pC/N, tanδ = 0.006 and εr = 172 at the sintering temperature of 960 ºC, which were much better than corresponding values for pure KNN at 1110 ºC.

Keywords

Main Subjects


1. Liu, B., et al., Enhanced piezoelectricity in (K, Na)NbO3-based ceramics by optimizing composition and texture process. Journal of Alloys and Compounds, 2017. 695(Supplement C): p. 2207- 2214.
2. Pan, D., et al., Phase structure, microstructure, and piezoelectric properties of potassium-sodium niobate-based lead-free ceramics modified by Ca. Journal of Alloys and Compounds, 2017.693(Supplement C): p. 950-954.
3. I.T.Seo, et al., Microstructure and piezoelectric properties of (K0.5Na0.5)NbO3 lead free piezoelectric ceramics with V2O5 addition. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2009. 56(11).
4. Dai, Y., X. Zhang, and G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007. 90(26): p. 262903.
5. Wu, J., D. Xiao, and J. Zhu, Potassium–Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chemical Reviews, 2015. 115(7): p. 2559-2595.
6. Zheng, T., et al., Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018. 98: p. 552-624.
7. Changa, R.-C., et al., The effects of sintering temperature on the properties of lead-freen (Na0.5K0.5)NbO3-SrTiO3 ceramics. Journal of Alloys and Compounds, 2008. 456: p. 308-312.
8. Hayati, R., M. Feizpour, and T. Ebadzadeh, Effect of Nano and Micron WO3 on Microstructure and Electrical Properties of Lead Free Potassium Sodium Niobate Piezoceramics. Advanced Ceramics Progress, 2015. Vol. 1(No. 3 ): p. 11-15.
9. Rubio-Marcos, F., et al., Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009. 29(14): p. 3045-3052.
10. A. Souza, C., J. Eiras, and M. Lente, Spark plasma sintering of doped (Kx Na 1-x)NbO3 piezoceramics. Vol. 499. 2016. 47-56.
11. Xu, K., et al., Superior Piezoelectric Properties in Potassium– Sodium Niobate Lead-Free Ceramics. Advanced Materials, 2016. 28(38): p. 8519-8523.
12. Wang, X., et al., Giant Piezoelectricity in Potassium–Sodium Niobate Lead-Free Ceramics. Journal of the American Chemical Society, 2014. 136(7): p. 2905-2910.
13. Wu, B., et al., Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. Journal of the American Chemical Society, 2016. 138(47): p. 15459-15464.
14. Gio, P.D. and V.T.B. Thuy, Structure and Physical Properties of ZnO-Doped KNLN Lead-Free Piezoelectric Ceramics. Composite Materials, 2017. 1(1): p. 1-7.
15. Pan, Z., et al., Enhanced Piezoelectric Properties and Thermal Stability in the (K0.5Na0.5)NbO3:ZnO Lead-Free Piezoelectric Composites. Journal of the American Ceramic Society, 2015. 98(12): p. 3935-3941.
16. Ramajo, L., J. Taub, and M.M. Castro, Effect of ZnO Addition on the Structure, Microstructure and Dielectric and Piezoelectric Properties of K0.5Na0.5NbO3 Ceramics. Vol. 17. 2014. 728-733.
17. Kim, J.H., et al., Low-temperature sintering and piezoelectric properties of CuO-doped (K,Na)NbO3 ceramics. Materials Research Bulletin, 2017. 96(Part 2): p. 121-125.
18. Park, H.-Y., et al., Effect of CuO on the Sintering Temperature and Piezoelectric Properties of (Na0.5K0.5)NbO3 Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society, 2008. 91(7): p. 2374-2377.
19. Ebru Mensur, A. and M. Papila. Electrical properties of CuO added-KNN ceramics and 1–3 Piezocomposites. in 2009 IEEE International Ultrasonics Symposium. 2009.
20. Wu, W., et al., Structure and asymmetric ferroelectric loops of (K0.48Na0.52)NbO3–1mol%CuO–xmol%Co2O3 ceramics with lowtemperature sintering. Journal of Alloys and Compounds, 2016. 670: p. 128-134.
21. Shen, Z., et al., Processing and dielectric properties of Bi-doped Sr(Ti0.95Zr0.05)O3 ceramics. Journal of Materials Processing Technology, 2008. 197(1–3): p. 151-155.
22. Kim, J.H., et al., Low-temperature sintering and piezoelectric properties of CuO-doped (K,Na)NbO3 ceramics. Materials Research Bulletin, 2017. 96: p. 121-125.
23. Sheng, Y., et al., Effect of oriented defect-dipoles on the ferroelectric and piezoelectric properties of CuO-doped (K0.48Na0.52)0.96Li0.04Nb0.805Ta0.075Sb0.12O3 ceramics. Ceramics International, 2018. 44(9): p. 10141-10146.
24. Huan, Y., et al., Defect control for enhanced piezoelectric properties in SnO2 and ZrO2 co-modified KNN ceramics fired under reducing atmosphere. Journal of the European Ceramic Society, 2017. 37(5): p. 2057-2065.
25. Seung-Ho, P., et al., Microstructure and Piezoelectric Properties of ZnO-added (Na0.5 K0.5)NbO3 Ceramics. Japanese Journal of Applied Physics, 2004. 43(8B): p. L1072-L1074.
26. Seo, I.-T., et al., Effect of CuO on the Sintering and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society, 2008. 91(12): p. 3955-3960.
27. Li, Z., et al., Dielectric and piezoelectric properties of ZnO and SnO2 co-doping K0.5Na0.5Nbo3 ceramics. Physica B: Condensed Matter, 2010. 405(1): p. 296-299.
28. Ahn, C.-W., et al., Effect of ZnO and CuO on the Sintering Temperature and Piezoelectric Properties of a Hard Piezoelectric Ceramic. Journal of the American Ceramic Society, 2006. 89(3): p. 921-925.
29. Hayati, R. and A. Barzegar, Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive. Materials Science and Engineering: B, 2010. 172(2): p. 121-126.
30. W. Baker, D., et al., A Comprehensive Study of the Phase Diagram of KNN. Vol. 95. 2009. 091903-091903.
31. Souza, C.A., J.A. Eiras, and M.H. Lente, Spark plasma sintering of doped (Kx Na1-x)NbO3 piezoceramics. Ferroelectrics, 2016. 499(1): p. 47-56.
32. Tian, Y., et al., Phase transition behavior and electrical properties of lead-free (Ba1 - xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. Journal of Applied Physics, 2013. 113(18): p. 184107-7.
33. Hu, Q., et al., Studying the roles of Cu and Sb in K0.48Na0.52NbO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2015. 640: p. 327-334.
34. Lee, H.J. and S. Zhang, Perovskite Lead-Free Piezoelectric Ceramics, in Lead-free piezoelectrics, s. Priya and s. Nahm, Editors. 2013, Springer: New York. p. 302.
35. Ramajo, L.A., J. Taub, and M.S. Castro, Effect of ZnO addition on the structure, microstructure and dielectric and piezoelectric
properties of K0.5Na0.5NbO3 ceramics. Materials Research, 2014. 17: p. 728-733.
36. Fuentes, J., et al., Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta. Vol. 118. 2015.
37. Seung-Ho, P., et al., Microstructure and Piezoelectric Properties of ZnO-added (Na0.5 K0.5 )NbO3 Ceramics. Japanese Journal of
Applied Physics, 2004. 43(8B): p. L1072.
38. Hayati, R., et al., Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Journal of the European Ceramic Society, 2016. 36(14): p. 3391-3400.
39. Arlt, G., D. Hennings, and G.d. With, Dielectric properties of finegrained barium titanate ceramics. Journal of Applied Physics, 1985. 58(4): p. 1619-1625.
40. Jigong Hao, et al., Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2012. 95(6): p. 1998-2006.
41. Hollenstein, E., Dielectric and piezoelectric properties of potassium sodium niobate ceramics, in Matrials science & engineering, Ceramics laboratory. 2007, Lausanne, EPFL: Lausanne.
42. Orihara, H., S. Hashimoto, and Y. Ishibashi, A Theory of D-E Hysteresis Loop Based on the Avrami Model. Journal of Physics Society Japan, 1994. 63: p. 1031-5.
43. Feizpour, M., et al., Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceramics International, 2014. 40(1, Part A): p. 871-877.