An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Document Type: Review Article


Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran


Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials (RAM), and magnetic hyperthermia applications. According to these particularities, cobalt ferrite-based core-shell nanoparticles have been reviewed focusing on hyperthermia applications. Promoting anisotropic constant and magnetic permeability, increasing the chemical and physical stability of nanoparticles, the proper distribution of particles in aquatic environments to prevent agglomeration, sedimentation, and obstruction in a specific position, as well as enhancing biocompatibility and avoiding the disadvantages, are essential for better efficiency in hyperthermia aspect. For this purpose, the synthesis of magnetic nanoparticles of cobalt ferrite with preferentially smaller sizes, as well as a narrower range of particle size distribution, is the primary objective of the synthesis process. Hence, it is important to identify the influence of effective parameters on the size and shape of nanoparticles, the substitution mechanisms of rare-earth elements, and changing the structure and behavior of the magnetic properties by these elements and finally, the thermal properties. Moreover, surface modifications and coating are other significant parameters in hyperthermia field that are investigated to achieve a suitable and stable distribution in aqueous media, and how they behave against the magnetic field.


Main Subjects

  1. Sanpo, N., Berndt, C. C., Wen, C., Wang, J., “Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications”, Acta Biomaterialia, Vol. 9, No. 3, (2013), 5830–5837.
  2. Demirci, Ç.E., Manna, P.K., Wroczynskyj, Y., Aktürk, S., Van Lierop, J., “Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency”, Journal of Magnetism and Magnetic Materials, Vol. 458, (2018), 253-260.
  3. Salunkhe, A.B., Khot, V.M., Ruso, J.M., Patil, S.I., “Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia”, Journal of Magnetism and Magnetic Materials, Vol.419, (2016), 533-542.
  4. Manohar, A., Krishnamoorthi, C., “Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres”, Journal of Magnetism and Magnetic Materials, Vol. 443, (2017), 267-274.
  5. Linh, P.H., Anh, N.T.N., Nam, P.H., Bach T.N., Lam, V.D., Manh, D.H., “A Facile Ultrasound Assisted Synthesis of Dextran-Stabilized Co0.2Fe0.8Fe2O4 Nanoparticles for Hyperthermia Application”, IEEE Transactions on Magnetics, Vol. 54, No. 6, (2018), 1-4.
  6. Shaterabadi, Z., Nabiyouni, G., Soleymani, M., “Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy”, Progress in Biophysics and Molecular Biology, Vol. 133, (2018), 9-19.
  7. Gharibshahian, M., Mirzaee, O., Nourbakhsh, M.S., “Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified pechini method”, Journal of Magnetism and Magnetic Materials, Vol. 425, (2017),48-56.
  8. Callister W.D., Rethwisch D.G.,  “Materials Science and Engineering: An introduction”, New York: John Wiley & Sons, (2013).
  9. Askeland D.R., Fulay P.P., Wright, W.J., “The Science and Engineering of Materials”, Stamford: Cengage Learning Inc., (2010).
  10. Usov, N.A., Nesmeyanov, M.S., Tarasov, V.P., “Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia”, Scientific Reports, Vol. 8, No. 1, (2018), 1-9.
  11. Blanco-Andujar, C., Walter, A., Cotin, G., Bordeianu, C., Mertz, D., Felder-Flesch, D., Begin-Colin, S., “Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia”, Nanomedicine,Vol. 11, No. 14, (2016), 1889-1910.
  12. Hatamie, S., Parseh, B., Ahadian, M.M., Naghdabadi, F., Saber, R., Soleimani, M., “Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study”, Journal of Magnetism and Magnetic Materials, Vol. 462, (2018), 185-194.
  13. Deatsch, A.E., Evans, B.A., “Heating efficiency in magnetic nanoparticle hyperthermia”, Journal of Magnetism and magnetic Materials, Vol. 354, (2014), 163-172.
  14. Dalal, M., Das A., Das, D., Ningthoujam R.S., Chakrabarti P.K., “Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes”, Journal of Magnetism and Magnetic Materials, Vol. 460, (2018), 12-27.
  15. Sodaee, T., Ghasemi, A., Shoja-Razavi, R., “Microstructural Characteristics and Magnetic Properties of Gadolinium-Substituted Cobalt Ferrite Nanocrystals Synthesized by Hydrothermal Processing”, Journal of Cluster Science, Vol. 27, No. 4,  (2016), 1239-1251.
  16. Kafrouni, L., Savadogo O., “Recent progress on magnetic nanoparticles for magnetic Hyperthermia”, Progress in Biomaterials, Vol. 5, No. 3-4, (2016), 147–160.
  17. Sangian, H., Mirzaee, O., Tajally, M., “Reverse Chemical Co-Precipitation: An Effective Method for Synthesis of BiFeO3 Nanoparticles”, Advanced Ceramics Progress, Vol. 3, No. 1, (2017) 31-36.
  18. Lee, J. S., Cha, J. M., Yoon, H. Y., Lee, J.K., Kim, Y., “Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity”, Scientific Reports, Vol. 5, No. 1, (2015), 1-7.
  19. Zhang, M., Zi, Z., Liu, Q., Zhang, P., Tang, X., Yang, J., Zhu, X., Sun, Y., Dai, J., “Size Effects on Magnetic Properties of Ni0.5Zn0.5Fe2O4 Prepared by Sol-Gel Method”, Advances in Materials Science and Engineering, (2013).
  20. Alves, T. E. P., Pessoni, H. V. S., Franco Jr, A., “The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles”, Physical Chemistry Chemical Physics, Vol. 19, No. 25, (2017), 16395-16405.
  21. Zeeshan, T.,  Anjum, S.,  Iqbal, H., Zia, R., “Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic property”, Materials Science-Poland, Vol. 36, No. 2, (2018), 255-263.
  22. Hossain, M. S., Alam, M.B.,  Shahjahan, M.,  Begum, M. H. A., Hossain, M. M.,  Islam, S.,  Khatun, N.,  Hossain, M.,  Alam, M.S., Al-Mamun, M., “Synthesis, structural investigation, dielectric and magnetic properties of Zn2+-doped cobalt ferrite by the sol–gel technique”, Journal of Advanced Dielectrics, Vol. 8, No. 04 (2018) 1850030.
  23. Maaz, K., Karim, S.,  Kim, G. H., “Effect of particle size on the magnetic properties of NixCo1-xFe2O4 (x≈ 0.3) nanoparticles”, Chemical Physics Letters, Vol. 549, (2012), 67-71.
  24. Beik, J., Abed, Z., Ghoreishi, S.F., Hosseini-Nami, S., Mehrzadi, S., Shakeri- Zadeh, A., Kamrava, S.K., “Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications”, Journal of Controlled Release, Vol. 235, (2016), 205–221.
  25. Amiri-Amraee, I., Zahedi, F., “Polymer nanostructures Synthesis, Properties and Analysis”, 1st ed., Amirkabir University of Technology Publication, (Autumn 2018).
  26. Zuo, X., Wu, C., Zhang, W., Gao, W., “Magnetic carbon nanotubes for self-regulating temperature hyperthermia”, RSC Advances, Vol. 8, No.22, (2018), 11997-12003.
  27. Nikzad, L., Majidian, H., Ghofrani, S., Ebadzadeh, T., “Synthesis of MgTiO3 Powder Via Co-Precipitation Method and Investigation of Sintering Behavior”, Advanced Ceramics Progress, Vol. 4, No.1, (2018) 40-44.
  28. Yadavalli, T., Jain, H., Chandrasekharan, G., Chennakesavulu, R., “Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method”, AIP Advances, Vol. 6, No.5, (2016), 055904.
  29. Pilati, V., Cabreira Gomes, R., Gomide, G., Coppola, P., Silva F.G., Paula, F.L., Perzynski, R., Goya, G.F., Aquino, R., Depeyrot, J., “Core/Shell Nanoparticles of Non-Stoichiometric Zn-Mn and Zn-Co Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia”, The Journal of Physical Chemistry C , Vol. 122, No. 5, (2018), 3028-3038.
  30. Vamvakidis, K., Mourdikoudis, S., Makridis, A., Paulidou, E., Angelakeris, M,. Dendrinou-Samara, C., “Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters”, Journal of Colloid and Interface Science, Vol. 511, (2018), 101-109.
  31. Ansari, M., Bigham, A., Hassanzadeh Tabrizi, S.A., Abbastabar Ahangar,  H., “Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia”, Journal of the American Ceramic Society , Vol. 101, No.8, (2018), 3649-3661.
  32. Carrião, M.S., Aquino, V.R., Landi, G.T., Verde, E.L., Sousa,  M.H., Bakuzis, A.F., “Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study”, Journal of Applied Physics, Vol. 121, No.17, (2017)173901.
  33. Rodrigues, H.F., Capistrano, G., Mello, F.M., Zufelato, N., Silveira-Lacerda, E., Bakuzis, A.F., “Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography”, Physics in Medicine & Biology, Vol. 62, No. 10, (2017), 4062.
  34. Hammad, M., Nica, V., Hempelmann, R., “Synthesis and Characterization of Bi-Magnetic Core/Shell Nanoparticles for Hyperthermia Applications”, IEEE Transactions on Magnetics, Vol. 53, No. 4, (2017), Art no. 4600306.
  35. Sheng, Y., Li, S., Duan, Z., Zhang, R., Xue, J., “Fluorescent magnetic nanoparticles as minimally-invasive multi-functional theranostic platform for fluorescence imaging, MRI and magnetic hyperthermia”, Materials Chemistry and Physics, Vol. 204, (2018), 388-396.
  36. Casula, M.F., Conca, E., Bakaimi, I., Sathya, A., Materia, M.E., Casu, A., Falqui, A., Sogne, E., Pellegrino, T., Kanaras, A.G., “Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia”, Physical Chemistry Chemical Physics, Vol. 18, No. 25, (2016), 16848-16855.
  37. Zhang, Z.Q., Song, S.C., “Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy”, Biomaterials, Vol. 100, No. 132, (2017), 16-27.
  38. Lavorato, G., Lima Jr, E., Vasquez Mansilla, M., Troiani, H., Zysler, R., Winkler, E., “Bifunctional CoFe2O4/ZnO Core/Shell Nanoparticles for Magnetic Fluid Hyperthermia with Controlled Optical Response”, The Journal of Physical Chemistry C, Vol. 122, No.5, (2018), 3047-3057.
  39. Coïsson, M., Barrera, G., Celegato, F., Martino, L., Kane, S.N., Raghuvanshi, S., Vinai F., Tiberto, P., “Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications”, Biochimica et Biophysica Acta (BBA)-General Subjects, Vol. 1861, No. 6, (2017), 1545-1558.
  40. Ahmad, A., Bae, H., Rhee, I., Hong S., “Poly(ethyleneglycol)-coated Ni0.655Zn0.35Fe2O4 nanoparticles for hyperthermia applications”, Journal of the Korean Physical Society, Vol. 70, No. 6, (2017), 615–620.
  41. Jang, J.T., Bae, S., “Mg shallow doping effects on the ac magnetic self-heating characteristics of γ-Fe2O3 superparamagnetic nanoparticles for highly efficient hyperthermia”, Applied Physics Letters, Vol. 111. No. 18, (2017), 183703.
  42. Tonthat, L., Yamamoto, Y., Aki, F., Saito, H., Mitobe, K., “Thermosensitive Implant for Magnetic Hyperthermia by Mixing Micro-Magnetic and Nano-Magnetic Particles”, IEEE Transactions on Magnetics, Vol. 54, No. 6, (2018),1-4.
  43. Jang, J.T., Jeoung, J.W., Park,  J.H., Lee, W.J., Kim, Y.J., Seon, J., Kim, M., Lee, J., Paek, S.H., Park, K.H., Bae, S., “Effects of Recovery Time during Magnetic Nanofluid Hyperthermia on the Induction Behavior and Efficiency of Heat Shock Proteins 72”, Scientific Reports, Vol. 7, No.1, (2017). 1-9.
  44. Xie, J., Yan, C., Yan, Y., Chen, L., Song, L., Zang, F., An, Y., Teng, G., Gu, N., Zhang, Y., “Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: A comparison of passive and active targeting effects”, Nanoscale, Vol. 8, No. 38, (2016), 16902-16915.
  45. Dey, C., Baishya, K., Ghosh, A., Goswami, M.M., Ghosh, A., Mandal, K., “Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles”, Journal of Magnetism and Magnetic Materials, Vol. 427, (2017), 168-174.
  46. Zhang, W., Zuo, X., Niu, Y., Wu, C., Wang, S., Guan, S., Silva, S.R.P., “Novel nanoparticles with Cr3+ substituted ferrite for self-regulating temperature hyperthermia”, Nanoscale, Vol. 9, No. 37, (2017), 13929–13937.
  47. Morales-Dalmau, J., Vilches, C., de Miguel, I., Sanz, V., Quidant, R., “Optimum morphology of gold nanorods for light-induced hyperthermia”, Nanoscale, Vol. 10, No. 5, (2018), 2632-2638.
  48. Starsich, F.H., Sotiriou, G.A., Wurnig, M.C., Eberhardt, C., Hirt A.M., Boss, A., Pratsinis, S.E., “Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment”, Advanced Healthcare Materials, Vol. 5, No. 20, (2016), 2698-2706.
  49. Shaw, S.K., Alla, S.K., Meena, S.S., Mandal, R.K., Prasad, N.K., “Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles”, Journal of Magnetism and Magnetic Materials, Vol. 434, (2017), 181-186.
  50. ur Rashid, A., Humayun, A., Manzoor, S., “MgFe2O4/ZrO2 composite nanoparticles for hyperthermia applications”, Journal of Magnetism and Magnetic Materials, Vol. 428, (2017), 333-339.
  51. Zhang, Y., Zhai, D.,  Xu, M., Yao, Q., Chang, J., Wu, C., “3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of one tumor cells”, Journal of  Materials Chemistry B, Vol. 4, No. 17, (2016), 2874-2886.
  52. Soleymani, M., Edrissi, M., Alizadeh, A.M., “Thermosensitive polymer-coated La0.73Sr0.27MnO3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems”, Polymer Journal, Vol. 47, No. 12, (2015), 797-801.
  53. Faraji, M., Yamini, Y., Rezaee, M., “Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization, and Applications", Journal of the Iranian Chemical Society, Vol. 7, No. 1, (2010), 1-37.
  54. Motavallian, P.,  Abasht, B., Mirzaee, O., Abdollah-pour, H., “Correlation between structural and magnetic properties of substituted (Cd, Zr) cobalt ferrite nanoparticles”, Chinese Journal of Physics, Vol. 57, (2019), 6-13.
  55. Yadav, R. S., Havlica, J., Kuřitka, I., Kozakova, Z., Bartoníčková, E., Masilko, J., Kalina, L., Wasserbauer, J., Hajduchova, M., Enev, V., “Structural and Magnetic Properties of CoFe2-xGdxO4(0.0 ≤ x ≥ 0.1) Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol–Gel Auto-combustion Method”, Journal of Superconductivity and Novel Magnetism, Vol. 28, No. 6, (2015), 1797-1806.
  56. Zhou, B., Zhang, Y. W., Liao, C. S., Yan, C.H., Chen, L.Y., Wang, S.Y., “Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films”, Journal of Magnetism and Magnetic Materials, Vol. 280, No. 2-3,  (2004), 327-333.
  57. Xavier, S., Thankachan, S., Jacob, B. P., Mohammed, E. M., “Effect of Samarium Substitution on the Structural and Magnetic Properties of Nanocrystalline Cobalt Ferrite”, Journal of Nanoscience, Vol. 2013, (2013).
  58. Naik, S.R., Salker, A.V., “Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy”, Journal of Materials Chemistry, Vol. 22, No. 6, (2012), 2740-2750.