The Effect of TiC Additive with Al2O3-Y2O3 on the Microstructure and Mechanical Properties of SiC Matrix Composites

Document Type: Original Research Article

Authors

1 Composite Materials & Technology Center, Malek Ashtar University of Technology, Tehran, Iran

2 Department of Materials Science and Engineering, Faculty of Technology and Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

3 Department of Ceramic, Shahreza Branch, Islamic Azad University, Shahreza, Iran

Abstract

In this research, the SiC-matrix composite with different amounts of TiC (0, 2.5, 5, 7.5, and 10 wt%) supplemented with additives including 4.3 wt% Al2O3 and 5.7 wt% Y2O3 were utilized to initiate the required liquid phase. The sintering process was performed using pressureless sintering at      1900 °C for 1.5 hours under argon atmosphere. The composition and microstructure of the obtained composites were analyzed using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and Energy-Dispersive X-ray Spectroscopy (EDX). The results showed that TiC additives improved the densification of samples and impeded the growth of SiC grains. According to the phase analysis, the SiC was the main phase, while the TiC and YAG were characterized as partial phases. Additionally, due to the reaction of TiC and Al2O3, the composition of the liquid phase contained YAG and YAM. Assessments revealed that the microstructure and the final properties of composites were affected by density, produced phases and their distribution in the matrix, and grain size. According to the results, upon increasing the TiC up to 5 wt%, all the measured properties including density, hardness, elastic modulus, and fracture toughness improved and reached 97.40%, 26.73 GPa, 392 GPa, and 5.80 MPa.m1/2, respectively. However, with increasing the additives to more than 5 wt%, these properties deteriorated. Microscopic evaluations revealed that crack deflection and crack bridging mechanisms contributed to the fracture toughness of SiC ceramics.

Keywords

Main Subjects


 

  1. Lopez, O., Ortiz, A., Guiberteau, F., Padture, N., “Microstructural design of sliding wear sliding wear-resistant liquid-phase-sintered SiC: an overview”, Journal of the European Ceramic Society, Vol. 27, No. 11, (2007), 3351–3357. DOI:10.1016/j.jeurceramsoc.2007.02.190
  2. Janney, M., “Mechanical properties and oxidation behavior of a hot pressed SiC-15 vol% TiB2 composite”, American Ceramic Society Bulletin, Vol. 66, No. 2, (1987), 322–324
  3. Ghadami, S., Baharvandi, H. R., Ghadami, F., “Influence of the vol% SiC on properties of pressureless Al2O3/SiC nanocomposites”, Journal of Composite Materials, Vol. 50, No. 10, (2016), 1367-75. DOI:10.1177/0021998315591300
  4. Noviyanto, A., Yoon, D., “One component metal oxide sintering additive for β-SiC based on thermodynamic calculation and experimental observations”, Metals and Materials International, Vol. 18, No. 1, (2012), 63–68. DOI:10.1007/s12540-012-0008-z
  5. Noviyanto, A., Yoon, D., “Metal oxide additives for the sintering of silicon carbide: reactivity and densification”, Current Applied Physics, Vol. 13, No. 1, (2013), 287–292. DOI:10.1016/j.cap.2012.07.027
  6. Ortiz, A. L., Borrero-Lopez, O., Quadir, M. Z., Guiberteau, F., “A route for the pressureless liquid-phase sintering of SiC with low additive content for improved sliding-wear resistance”, Journal of the European Ceramic Society, Vol. 32, No. 4, (2012), 965–976. DOI:10.1016/j.jeurceramsoc.2011.10.052
  7. Ghadami, S., Taheri-Nassaj, E., Baharvandi, H. R., “Novel HfB2-SiC-MoSi2 composites by reactive spark plasma sintering”, Journal of Alloys and Compounds,Vol.809, (2019),151705. DOI:10.1016/j.jallcom.2019.151705 
  8. Khodaei, M., Yaghobizadeh, O., Baharvandi, H. R., Dashti, A., “Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites”, International Journal of Refractory Metals and Hard Materials, Vol. 70, (2018), 19–31. DOI:10.1016/j.ijrmhm.2017.09.005
  9. Magnani, G., Beltrami, G., Minoccari, G. L., pilotti, L., “Pressureless sintering and properties of αSiC-B4C composite”, Journal of the European Ceramic Society, Vol. 21, No. 5, (2001), 633–638. DOI:10.1016/S0955-2219(00)00244-2
  10. Ribeiro, S., Ribeiro, G. C., Mrego de oliveira, “Properties of SiC ceramics sintered via liquid phase using Al2O3 + Y2O3, Al2O3 + Yb2O3 and Al2O3 + Dy2O3 as additives: a comparative study”, Materials Research, Vol. 18, No. 3, (2015), 525–529. DOI:10.1590/1516-1439.311314
  11. Khodaei, M., Yaghobizadeh, O., Shahraki, A. A, Esmaeeli, S., “Investigation of the effect of Al2O3–Y2O3–CaO (AYC) additives on sinterability, microstructure and mechanical properties of SiC matrix composites: a review”, International Journal of Refractory Metals and Hard Materials,Vol. 78, (2018), 9–26. DOI:10.1016/j.ijrmhm.2018.08.008
  12. Suzuki, S., sasaki, M., “Effects of sintering atmosphere on grain morphology of liquid phase- sintered SiC with Al2O3 additions”, Journal of the European Ceramic Society,Vol. 25, No. 9, (2005), 1611–1618. DOI:10.1016/j.jeurceramsoc.2004.06.007
  13. Zhang J., Jiang, D., Lin, Q., Chen, Z., Huang, Z., “Properties of silicon carbide ceramics from gelcasting and pressureless sintering”,Materials & Design, Vol. 65, (2015), 12–16. DOI:10.1016/j.matdes.2014.08.034
  14. Noviyanto, A., Yoon, D.H., “Rare-earth oxide additives for the sintering of silicon carbide”, Diamond and Related Materials, Vol. 38, (2013), 124–130. DOI:10.1016/j.diamond.2013.07.003
  15. Tatarko, P., Lojanova, S., Dusza, J., Šajgalik, P., “Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites”,Materials Science and Engineering: A, Vol.527, No. 18-19, (2010), 4771–4778. DOI:10.1016/j.msea.2010.04.069
  16. Liang, H., Yao, X., Zhang, J., Liu, X., Huang, Z., “The effect of rare earth oxides on the pressureless liquid phase sintering of α-SiC”, Journal of the European Ceramic Society, Vol. 34, No. 12, (2014), 2865–2874. DOI:10.1016/j.jeurceramsoc.2014.03.029
  17. lopez, O.B., Ortiz, A., Guiberteau, F., padture, N., “Effect of liquid-phase content on the contact-mechanical properties of liquid-phase-sintered α-SiC”, Journal of the European Ceramic Society, Vol. 27, No. 6, (2007), 2521–2527. DOI:10.1016/j.jeurceramsoc.2006.09.012
  18. Magnani, G., Minoccari, G. L., Pilotti, L., “Flexural strength and toughness of liquid phase sintered silicon carbide”, Ceramic International, Vol. 26, No. 5, (2000), 495–500. DOI:10.1016/S0272-8842(99)00084-X
  19. Neher, R., Herrmann, M., Brandt, K., Jaenicke-Roessler, K., Pan, Z., Fabrichnaya, O., Seifert, H. J., “Liquid phase formation in the system SiC, Al2O3, Y2O3”, Journal of the European Ceramic Society, Vol. 31, No 1-2, (2011), 175–181. DOI:10.1016/j.jeurceramsoc.2010.09.002
  20. khodaei, M., yaghobizadeh, O., Naghavi, S.H., Alhosseini, esmaeeli, S., Mousavi, S.R., “The effect of Oxide, Carbide, Nitride and Boride additives on properties of pressureless sintered SiC: a Review”, Journal of the European Ceramic Society, Vol. 39, No. 7, (2019), 2215–2231. DOI:10.1016/j.jeurceramsoc.2019.02.042
  21. Ihle, J., Herrmann, M., Adler, J., “Phase formation in porous liquid phase sintered silicon carbide: part III: interaction between Al2O3–Y2O3 and SiC”, Journal of the European Ceramic Society, Vol. 25, No. 7, (2005), 1005–1013. DOI:10.1016/j.jeurceramsoc.2004.04.017
  22. Lee, S. M., Kim, T. W., Lim, H. J., Kim, C., Kim, Y. W., Lee, K. S., “Mechanical properties and contact damages of nanostructured silicon carbide ceramics”, Journal of the Ceramic Society of Japan, Vol. 115, No. 1341, (2007), 304–309. DOI:10.2109/jcersj.115.304
  23. Huang, Z. H., Jia, D. C., Zhou, Y., Wang, Y. J., “Effect of a new additive on mechanical properties of hot-pressed silicon carbide ceramics”, Materials Research Bulletin, Vol. 37, No. 5, (2002), 933–940. DOI:10.1016/S0025-5408(02)00704-3
  24. Guo, W., Jin, Z. G., Xu, T. X., Wu, W. B., “Low temperature pressureless sintering of SiC ceramics with Al2O3-Y2O3-La2O3 Addition”, In Key Engineering Materials,Trans Tech Publications Ltd, Vol. 226, (2002), 725–728. DOI:10.4028/www.scientific.net/KEM.224-226.725
  25. Khodaei, M., Yaghobizadeh, O., Ehsani, N., Baharvandi, H. R., “The effect of TiO2 additive on the electrical resistivity and mechanical properties of pressureless sintered SiC ceramics with Al2O3-Y2O3”, International Journal of Refractory Metals and Hard Materials, Vol. 76, (2018), 141–148. DOI:10.1016/j.ijrmhm.2018.06.005
  26. Huang, Z. H., Jia, D. C., Zhou, Y., Liu, Y. G., “A new sintering additive for silicon carbide ceramic”, Ceramic International, Vol. 29, No. 1, (2003), 13–17. DOI:10.1016/S0272-8842(02)00082-2
  27. Liang, H. Q., Yao, X. M., Zhang, H., Liu, X. J., Huang, Z. R., “The effect of TiC on the liquid phase sintering of SiC ceramics with Al2O3 and Y2O3 additives”, In Key Engineering Materials,Trans Tech Publications Ltd, Vol. 602, (2014), 197–201. DOI:10.4028/www.scientific.net/KEM.602-603.197
  28. Marchi, J., Bressiani, J. C., Bressiani, A. H.A., “Densification Studies of Silicon Carbide-Based Ceramics with Yttria, Silica and Alumina as Sintering Additives”, Materials Research, Vol. 4, No. 4, (2000), 231-236. DOI:10.1590/s1516-14392001000400002
  29. Khodaei, M., Yaghobizadeh, O., Ehsani, N., Baharvandi, H. R., Dashti, A., “The effect of TiO2 additive on sinterability and properties of SiC-Al2O3-Y2O3 composite system”, Ceramic International, Vol. 44, No. 14, (2018), 16535–16542. DOI:10.1016/j.ceramint.2018.06.073
  30. Liang, H., Yao, X., Zhang, H., liu, X., Huang, Z., “In situ toughening of pressureless liquid phase sintered α-SiC by using TiO2”, Ceramic International, Vol. 40, No. 7, (2014), 10699–10704. DOI:10.1016/j.ceramint.2014.03.055
  31. Foster, D., Thompson, D. P., “The use of MgO as a densification aid for α-SiC”, Journal of the European Ceramic Society, Vol. 19, No. 16, (1999), 2823–2831. DOI:10.1016/S0955-2219(99)00060-6
  32. Gubernat, A., Stobierski, L., Labaj, P., “Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives”, Journal of the European Ceramic Society, Vol. 27, No. 2-3, (2007), 781–789. DOI:10.1016/j.jeurceramsoc.2006.04.009
  33. Zawrah, M. F., Shaw, L., “Liquid-phase sintering of SiC in presence of CaO”, Ceramic International, Vol. 30, No. 5, (2004), 721–725. DOI:10.1016/j.ceramint.2003.07.017
  34. Eom, J. H., Seo, Y. K., kim, Y. W., “Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina–Yttria–Calcia”, Journal of the American Ceramic Society, Vol. 99, No. 5, (2016), 1735–1741. DOI:10.1111/jace.14114
  35. Khodaei, M., Yaghobizadeh, O., Baharvandi, H. R., Alipour Shahrakia, A., Mohammadi, H., “The effect of nano-TiO2 additions on the densification and mechanical properties of SiC-matrix composite”, Ceramic International, Vol. 46, No. 5, (2020), 6477-6483. DOI:10.1016/j.ceramint.2019.11.128
  36. Ahmoye, D., Krstic, V. D., “Reaction sintering of SiC composites with in situ converted TiO2 to TiC”, Journal of Materials Science, Vol. 50, No. 7, (2015), 2806–2812. DOI:10.1007/s10853-015-8838-y
  37. Eom, J. H., Seo, Y. K., Kim, Y. W., Lee, S. J., “Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and Yttria”, Metals and Materials International, Vol. 21, No. 3, (2015), 525–530. DOI:10.1007/s12540-015-4383-0
  38. Ahmoye, D., Bucevac, D., Krstic, V. D., “Mechanical properties of reaction sintered SiC-TiC composite”, Ceramics International, Vol. 44, No. 12, (2018), 14401-14407. DOI:10.1016/j.ceramint.2018.05.050
  39. Hui, Y., Lingjie, Z., Xingzhong, G., Xiaoyi, Z., Xiaojian, F., “Pressureless sintering of silicon carbide ceramics containing zirconium diboride”, Ceramic International, Vol. 37, No. 6, (2011), 2031-2035. DOI:10.1016/j.ceramint.2011.01.048
  40. Kim, Y. W., Lee, S. G., Lee, Y. I., “Pressureless sintering of SiC-TiC composites with improved fracture toughness”, Journal of Materials Science, Vol. 35, No. 22, (2000), 5569–5574. DOI:10.1007/bf00544471
  41. Kim, K. J., Eom, J. H., Kim, Y. W., Seo, W. S., Lee, M. J., Hwang, S. S., “Highly resistive SiC ceramics sintered with Al2O3-AlN-Y2O3 additions”, Ceramic International, Vol. 43, No. 6, (2017), 5343–5346. DOI:10.1016/j.ceramint.2017.01.058