Bioabsorbable Screws for Anterior Cruciate Ligament Reconstruction Surgery: A Review

Document Type: Review Article

Authors

1 Department of Material and Chemical Engineering, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

2 Department of Materials and Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Razavi Khorasan, Iran

Abstract

One of the popular orthopedic implants is utilizing fixation screws to fix Anterior Cruciate Ligament (ACL) grafts and secure the graft into femur and tibia. Currently, these screws are made of titanium or bioabsorbable materials. In this respect, bioabsorbable screws were generated in order to overcome some of the potential problems caused by metallic screws. Although the bioabsorbable screws are susceptible to some drawbacks includingbone ingrowth features as well as good in vitro and in vivo mechanical properties. The biomechanical results of ACL screws showed that the ultimate failure loads and yield point loads varied from 800-1500 N and 600-1000 N, respectively. Moreover, the evaluations of in vivo degradation behaviorshowed the almost complete or fully complete resorption of ACL screws from 6 month to 2 years. However, it was proved that the addition of bone mineral phases such as Hydroxyapatite (HA), β-Tricalcium Phosphate (β-TCP), and Calcium Carbonate (CC) could enhance this degradation rate. Incorporation of biceramics into pure polymeric ACL screws may contribute to enhancing the osteogenesity of bone after full resoprption of screws,function as buffering agents that decrease the acidity of screw adjacents resulting from degradation of products, andimprovee the mechanical properties of ACL screws. In this paper, the latest bioabsorbable ACL screws which are currently available for graft fixation in orthopedic markets are discussed. A brief review of the literature regarding the physical, biological, and mechanical properties of bioabsorbable ACL screws was made. Besides,the insertion technique, various manufactured sizes, and in vitro and in vivo mechanical properties for each screw were addressed.

Keywords

Main Subjects


 1.     Fineberg, M. S., Zarins, B., Sherman, O. H., “Practical considerations in anterior cruciate ligament replacement surgery”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 16, No. 7, (2000), 715-724. https://doi.org/10.1053/jars.2000.8951

2.     Lee, J. W., Han, H. S., Han, K. J., Park, J., Jeon, H., Ok, M. R., Seok, H. K., Ahn, J. P., Lee, K. E., Lee, D. H., Yang, S. J., “Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy”, Proceedings of the National Academy of Sciences, Vol. 113, No. 3, (2016), 716-721. https://doi.org/10.1073/pnas.1518238113

3.     Zhao, D., Huang, S., Lu, F., Wang, B., Yang, L., Qin, L., Yang, K., Li, Y., Li, W., Wang, W., Tian, S., “Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head”, Biomaterials, Vol. 81, (2016), 84-92. https://doi.org/10.1016/j.biomaterials.2015.11.038

4.     Staiger, M. P., Pietak, A. M., Huadmai, J., Dias, G., “Magnesium and its alloys as orthopedic biomaterials: a review”, Biomaterials, Vol. 27, No. 9, (2006), 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003

5.     Sumner, D. R., Galante, J. O., “Determinants of stress shielding: design versus materials versus interface”, Clinical Orthopaedics and Related Research, Vol. 274, (1992), 202-212. https://doi.org/10.1097/00003086-199201000-00020

6.     Cutright, D. E., Hunsuck, E. E., “Tissue reaction to the biodegradable polylactic acid suture”, Oral Surgery, Oral Medicine, Oral Pathology, Vol. 31, No. 1, (1971), 134-139. https://doi.org/10.1016/0030-4220(71)90044-2

7.     Konan, S., Haddad, F. S., “A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery”, The Knee, Vol. 16, No. 1, (2009), 6-13. https://doi.org/10.1016/j.knee.2008.06.001

8.     Lambert, K. L., “Vascularized patellar tendon graft with rigid internal fixation for anterior cruciate ligament insufficiency”, Clinical Orthopaedics and Related Research (1976-2007), Vol. 172, (1983), 85-89. https://doi.org/10.1097/00003086-198301000-00016

9.     Kurosaka, M., Yoshiya, S., Andrish, J. T., “A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction”, The American Journal of Sports Medicine, Vol. 15, No. 3, (1987), 225-229. https://doi.org/10.1177/036354658701500306

10.   Almazán, A., Miguel, A., Odor, A., Ibarra, J. C., “Intraoperative incidents and complications in primary arthroscopic anterior cruciate ligament reconstruction”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 22, No. 11, (2006), 1211-1217. https://doi.org/10.1016/j.arthro.2006.06.019

11.   Matthews, L. S., Soffer, S. R., “Pitfalls in the use of interference screws for anterior cruciate ligament reconstruction: brief report”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 5, No. 3, (1989), 225-226. https://doi.org/10.1016/0749-8063(89)90177-1

12.   Böstman, O. M., Pihlajamäki, H. K., “Adverse tissue reactions to bioabsorbable fixation devices”, Clinical Orthopaedics and Related Research (1976-2007), Vol. 371, (2000), 216-227. https://doi.org/10.1097/00003086-200002000-00026

13.   Bottoni, C. R., DeBerardino, T. M., Fester, E. W., Mitchell, D., Penrod, B. J., “An intra-articular bioabsorbable interference screw mimicking an acute meniscal tear 8 months after an anterior cruciate ligament reconstruction”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 16, No. 4, (2000), 395-398. https://doi.org/10.1016/S0749-8063(00)90085-9

14.   Barber, F. A., Boothby, M. H., “Bilok interference screws for anterior cruciate ligament reconstruction: clinical and radiographic outcomes”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 23, No. 5, (2007), 476-481. https://doi.org/10.1016/j.arthro.2006.12.026

15.   Davis, K., Huser, A., Kreofsky, C., Nadler, D., Poblocki, J., “Bioactive Interference Screw for ACL Reconstruction”, Biomedical Engineering Design 400, University of Wisconsin-Madison. December 7, (2005). http://130.203.136.95/viewdoc/download?doi=10.1.1.456.6058&rep=rep1&type=pdf

16.   Watson, J. N., McQueen, P., Kim, W., Hutchinson, M. R., “Bioabsorbable interference screw failure in anterior cruciate ligament reconstruction: a case series and review of the literature”, The Knee, Vol. 22, No. 3, (2015), 256-261. https://doi.org/10.1016/j.knee.2015.02.015

17.   Moisala, A. S., Järvelä, T., Paakkala, A., Paakkala, T., Kannus, P., Järvinen, M., “Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 16, No. 12, (2008), 1080-1086. https://doi.org/10.1007/s00167-008-0593-z

18.   Mayr, H. O., Hube, R., Bernstein, A., Seibt, A. B., Hein, W., von Eisenhart-Rothe, R., “Beta-tricalcium phosphate plugs for press-fit fixation in ACL reconstruction—a mechanical analysis in bovine bone”, The Knee, Vol. 14, No. 3, (2007), 239-244. https://doi.org/10.1016/j.knee.2007.01.006

19.   Arama, Y., Salmon, L. J., Sri-Ram, K., Linklater, J., Roe, J. P., Pinczewski, L. A., “Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, blinded, randomized controlled trial with 5-year follow-up”, The American Journal of Sports Medicine, Vol. 43, No. 8, (2015), 1893-1901. https://doi.org/10.1177/0363546515588926

20.   Gulick, D. T., Yoder, H. N., “Anterior cruciate ligament reconstruction: clinical outcomes of patella tendon and hamstring tendon grafts”, Journal of Sports Science & Medicine, Vol. 1, No. 3, (2002), 63–71.

21.   Laxdal, G., Kartus, J., Eriksson, B. I., Faxen, E., Sernert, N., Karlsson, J., “Biodegradable and metallic interference screws in anterior cruciate ligament reconstruction surgery using hamstring tendon grafts: prospective randomized study of radiographic results and clinical outcome”, The American Journal of Sports Medicine, Vol. 34, No. 10, (2006), 1574-1580. https://doi.org/10.1177/0363546506288014

22.   Shen, C., Jiang, S. D., Jiang, L. S., Dai, L. Y., “Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 26, No. 5, (2010), 705-713. https://doi.org/10.1016/j.arthro.2009.12.011

23.   Cheng, P., Han, P., Zhao, C., Zhang, S., Wu, H., Ni, J., Hou, P., Zhang, Y., Liu, J., Xu, H., Liu, S., “High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF”, Biomaterials, Vol. 81, (2016), 14-26. https://doi.org/10.1016/j.biomaterials.2015.12.005

24.   Bach, F. D., Carlier, R. Y., Elis, J. B., Mompoint, D. M., Feydy, A., Judet, O., Beaufils, P., Vallée, C., “Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up”, Radiology, Vol. 225, No. 2, (2002), 541-550. https://doi.org/10.1148/radiol.2252010357

25.   Bedi, A., Kawamura, S., Ying, L., Rodeo, S. A., “Differences in tendon graft healing between the intra-articular and extra-articular ends of a bone tunnel”, HSS Journal, Vol. 5, No. 1, (2009), 51-57. https://doi.org/10.1007/s11420-008-9096-1

26.   Morgan, C. D., Gehrmann, R. M., Jayo, M. J., Johnson, C. S., “Histologic findings with a bioabsorbable anterior cruciate ligament interference screw explant after 2.5 years in vivo”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 18, No. 9, (2002), 1-6. https://doi.org/10.1053/jars.2002.36466

27.   Park, M. C., Tibone, J. E., “False magnetic resonance imaging persistence of a biodegradable anterior cruciate ligament interference screw with chronic inflammation after 4 years in vivo”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 22, No. 8, (2006), 911-e1. https://doi.org/10.1016/j.arthro.2005.06.030

28.   Warden, W. H., Chooljian, D., Jackson, D. W., “Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-L-lactic acid interference screws after anterior cruciate ligament reconstruction”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 24, No. 3, (2008), 370-e1. https://doi.org/10.1016/j.arthro.2006.12.032

29.   Barber, F. A., Elrod, B. F., McGuire, D. A., Paulos, L. E., “Bioscrew fixation of patellar tendon autografts”, Biomaterials, Vol. 21, No. 24, (2000), 2623-2629. https://doi.org/10.1016/s0142-9612(00)00130-7

30.   Fink, C., Benedetto, K. P., Hackl, W., Hoser, C., Freund, M. C., Rieger, M., “Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography–controlled study”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 16 No. 5, (2000), 491-498. https://doi.org/10.1053/jars.2000.4633

31.   Hackl, W., Fink, C., Benedetto, K. P., Hoser, C., “Transplant fixation by anterior cruciate ligament reconstruction. Metal vs. bioabsorbable polyglyconate interference screw. A prospective randomized study of 40 patients”, Der Unfallchirurg, Vol. 103, No. 6, (2000), 468-474. https://doi.org/10.1007/s001130050567

32.   Kaeding, C., Farr, J., Kavanaugh, T., Pedroza, A., “A prospective randomized comparison of bioabsorbable and titanium anterior cruciate ligament interference screws”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 21, No. 2, (2005), 147-151. https://doi.org/10.1016/j.arthro.2004.09.012

33.   Marti, C., Imhoff, A. B., Bahrs, C., Romero, J., “Metallic versus bioabsorbable interference screw for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction A preliminary report”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 5, No. 4, (1997), 217-221. https://doi.org/10.1007/s001670050053

34.   Myers, P., Logan, M., Stokes, A., Boyd, K., Watts, M., “Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 24, No. 7, (2008), 817-823. https://doi.org/10.1016/j.arthro.2008.02.011

35.   Shen, P. H., Lien, S. B., Shen, H. C., Wang, C. C., Huang, G. S., Chao, K. H., Lee, C. H., Lin, L. C., “Comparison of different sizes of bioabsorbable interference screws for anterior cruciate ligament reconstruction using bioabsorbable bead augmentation in a porcine model”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 25, No. 10, (2009), 1101-1107. https://doi.org/10.1016/j.arthro.2009.05.011

36.   Drogset, J. O., Grøntvedt, T., Tegnander, A., “Endoscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws: a prospective randomized study of the clinical outcome”, The American Journal of Sports Medicine, Vol. 33, No. 8, (2005), 1160-1165. https://doi.org/10.1177/0363546504272264

37.   Papalia, R., Vasta, S., D'Adamio, S., Giacalone, A., Maffulli, N., Denaro, V., “Metallic or bioabsorbable interference screw for graft fixation in anterior cruciate ligament (ACL) reconstruction?”, British Medical Bulletin, Vol. 109, No. 1, (2014), 19–29. http://doi.org/10.1093/bmb/ldt038

38.   Wang, J., Xu, J., Song, B., Chow, D. H., Yung, P. S. H., Qin, L., “Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits”, Acta Biomaterialia Vol. 63, (2017), 393–410. http://doi.org/10.1016/j.actbio.2017.09.018

39.   Chen, C. H., Lee. C. H., “Biological fixation in anterior cruciate ligament surgery”, Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, Vol. 1, No. 2, (2014), 48–53. http://doi.org/10.1016/j.asmart.2014.02.004

40.   Kohn, J., Abramson, S., Langer, R., “Bioresorbable and bioerodible materials”, In Ratner, B. D., Hoffman, A. S., Schoen, F. J., Lemons, J. E. (eds), Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Academic Press, San Diego, (2004), 115–127.

41.   Urayama, H., Kanamori, T., Kimura, Y., “Microstructure and thermomechanical properties of glassy polylactides with different optical purity of the lactate units”, Macromolecular Materials and Engineering, Vol. 286, No. 11, (2001), 705-713. https://doi.org/10.1002/1439-2054(20011101)286:11<705::AID-MAME705>3.0.CO;2-Q

42.   Törmälä, P., “Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties”, Clinical Materials, Vol. 10, No. 1-2, (1992), 29-34. https://doi.org/10.1016/0267-6605(92)90081-4

43.   Rupp, S., Krauss, P. W., Fritsch, E. W., “Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 13, No. 1, (1997), 61-65. https://doi.org/10.1016/s0749-8063(97)90210-3

44.   Caborn, D. N., Brand Jr, J. C., Nyland, J., Kocabey, Y., “A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw”, The American Journal of Sports Medicine, Vol. 32, No. 4, (2004), 956-961. https://doi.org/10.1177/0363546503261696

45.   Chang, H. C., Nyland, J., Nawab, A., Burden, R., Caborn, D. N., “Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae”, The American Journal of Sports Medicine, Vol. 33, No. 7, )2005(, 1057-1064. https://doi.org/10.1177/0363546504272265

46.   Pena, F., Grøntvedt, T., Brown, G. A., Aune, A. K., Engebretsen, L., “Comparison of failure strength between metallic and absorbable interference screws: influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference”, The American Journal of Sports Medicine, Vol. 24, No. 3, (1996), 329-334. https://doi.org/10.1177/036354659602400314

47.   Kousa, P., Jarvinen, T. L., Pohjonen, T., Kannus, P., Kotikoski, M., Jarvinen, M., “Fixation strength of a biodegradable screw in anterior cruciate ligament reconstruction”, The Journal of Bone and Joint Surgery. British Volume, Vol. 77, No. 6, (1995), 901-905. https://doi.org/10.1302/0301-620x.77b6.7593103

48.   Oh, Y. H., Namkoong, S., Strauss, E. J., Ishak, C., Jazrawi, L. M., Rosen, J., “Hybrid femoral fixation of soft-tissue grafts in anterior cruciate ligament reconstruction using the EndoButton CL and bioabsorbable interference screws: a biomechanical study”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 22, No. 11, (2006), 1218-1224. https://doi.org/10.1016/j.arthro.2006.07.022

49.   Weimann, A., Rodieck, M., Zantop, T., Hassenpflug, J., Petersen, W., “Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 21, No. 3, (2005), 266-274. https://doi.org/10.1016/j.arthro.2004.10.011

50.   Lenza, R. F. S., Jones, J. R., Vasconcelos, W. L., Hench, L. L., “In vitro release kinetics of proteins from bioactive foams”, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 67, No. 1, (2003), 121-129. https://doi.org/10.1002/jbm.a.10042

51.   Nakafuku, C., Takehisa, S. Y., “Glass transition and mechanical properties of PLLA and PDLLA‐PGA copolymer blends”, Journal of Applied Polymer Science, Vol. 93, No. 5, (2004), 2164-2173. https://doi.org/10.1002/app.20687

52.   Barber, F. A., “Poly-D, L-lactide interference screws for anterior cruciate ligament reconstruction”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 21, No. 7, (2005), 804-808. https://doi.org/10.1016/j.arthro.2005.04.104

53.   Esmaeilzadeh, J., Hesaraki, S., Hadavi, S. M. M., Esfandeh, M., Ebrahimzadeh, M. H., “Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique”, Materials Science and Engineering: C, Vol. 71, (2017), 807-819. https://doi.org/10.1016/j.msec.2016.10.070

54.   Esmaeilzadeh, J., Hesaraki, S., Hadavi, S. M. M., Ebrahimzadeh, M. H., Esfandeh, M., “Poly (D/L) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors”, Materials Science and Engineering: C, Vol. 77, (2017), 978-989. https://doi.org/10.1016/j.msec.2017.03.134

55.   Martinek, V., Friederich, N. F., “Tibial and pretibial cyst formation after anterior cruciate ligament reconstruction with bioabsorbable interference screw fixation”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 15, No. 3, (1999), 317-320. https://doi.org/10.1016/s0749-8063(99)70042-3

56.   Jagodzinski, M., Scheunemann, K., Knobloch, K., Albrecht, K., Krettek, C., Hurschler, C., Zeichen, J., “Tibial press-fit fixation of the hamstring tendons for ACL-reconstruction”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 14, No. 12, (2006), 1281-1287. https://doi.org/10.1007/s00167-006-0105-y

57.   Lajtai, G., Schmiedhuber, G., Unger, F., Aitzetmüller, G., Klein, M., Noszian, I., Orthner, E., “Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 17, No. 6, (2001), 597-602. https://doi.org/10.1053/jars.2001.21535

58.   Weimann, A., Zantop, T., Herbort, M., Strobel, M., Petersen, W., “Initial fixation strength of a hybrid technique for femoral ACL graft fixation”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 14, No. 11, (2006), 1122-1129. https://doi.org/10.1007/s00167-006-0159-x

59.   Pêgo, A. P., Grijpma, D. W., Feijen, J., “Enhanced mechanical properties of 1, 3-trimethylene carbonate polymers and networks”, Polymer, Vol. 44, No. 21, (2003), 6495-6504. https://doi.org/10.1016/s0032-3861(03)00668-2

60.   Farrar, D. F., Gillson, R. K., “Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight”, Biomaterials, Vol. 23, No. 18, (2002), 3905-3912. https://doi.org/10.1016/s0142-9612(02)00140-0

61.   Demirhan, M., Kilicoglu, O., Akpinar, S., Akman, S., Atalar, A. C., Göksan, M. A., “Time-dependent reduction in load to failure of wedge-type polyglyconate suture anchors”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 16, No, 4, (2000), 383-390. https://doi.org/10.1016/s0749-8063(00)90083-5

62.   Nieminen, T., Rantala, I., Hiidenheimo, I., “Biodegradable plates and screws composed of L-lactide, D-lactide and trimethylenecarbonate: Properties during a 3-year follow-up”, In European Conference on Biomaterials, Nantes, France, (2006).

63.   Järvelä, T., Nurmi, J. T., Paakkala, A., Moisala, A. S., Kaikkonen, A., Järvinen, M., “Chapter 52 - Improving Biodegradable Interference Screw Properties by Combining Polymers”, In The Anterior Cruciate Ligament: Reconstruction and Basic Science, Elsevier BV, (2008), 386–391. http://doi.org/10.1016/b978-1-4160-3834-4.10052-6

64.   Barth, J., Akritopoulos, P., Graveleau, N., Barthelemy, R., Toanen, C., Saffarini, M., “Efficacy of osteoconductive ceramics in bioresorbable screws for anterior cruciate ligament reconstruction: a prospective intrapatient comparative study”, Orthopaedic Journal of Sports Medicine, Vol. 4, No. 5, (2016), 2325967116647724. https://doi.org/10.1177/2325967116647724

65.   Lee, D. W., Lee, J. W., Kim, S. B., Park, J. H., Chung, K. S., Ha, J. K., Kim, J. G., Kim, W. J., “Comparison of poly-l-lactic acid and poly-l-lactic acid/hydroxyapatite bioabsorbable screws for tibial fixation in ACL reconstruction: clinical and magnetic resonance imaging results”, Clinics in Orthopedic Surgery, Vol. 9, No.3, (2017), 270-279. https://doi.org/10.4055/cios.2017.9.3.270

66.   Hunt, J. A., Callaghan, J. T., “Polymer-hydroxyapatite composite versus polymer interference screws in anterior cruciate ligament reconstruction in a large animal model”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 16, No. 7, (2008), 655-660. https://doi.org/10.1007/s00167-008-0528-8

67.   Barber, F. A., Dockery, W. D., “Long-term absorption of poly-L-lactic acid interference screws”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 22, No. 8, (2006), 820-826. https://doi.org/10.1016/j.arthro.2006.04.096

68.   Barber, F. A., Dockery, W. D., “Long-Term Degradation of Self-Reinforced Poly–Levo (96%)/Dextro (4%)–Lactide/β-Tricalcium Phosphate Biocomposite Interference Screws”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 32 No. 4, (2016), 608-614. https://doi.org/10.1016/j.arthro.2015.08.037

69.   Ntagiopoulos, P. G., Demey, G., Tavernier, T., Dejour, D., “Comparison of resorption and remodeling of bioabsorbable interference screws in anterior cruciate ligament reconstruction”, International Orthopaedics, Vol. 39, No. 4, (2015), 697-706. https://doi.org/10.1007/s00264-014-2530-8

70.   Barber, F. A., Dockery, W. D., “Biocomposite Interference Screws in Anterior Cruciate Ligament Reconstruction: Osteoconductivity and Degradation”, Arthroscopy, Sports Medicine, and Rehabilitation, Vol. 2, No. 2, (2020), e53–e58. http://doi.org/10.1016/j.asmr.2019.10.001

71.   Walsh, W. R., Cotton, N. J., Stephens, P., Brunelle, J. E., Langdown, A., Auld, J., Vizesi, F., Bruce, W., “Comparison of poly-L-lactide and polylactide carbonate interference screws in an ovine anterior cruciate ligament reconstruction model”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 23, No. 7, (2007), 757-765. https://doi.org/10.1016/j.arthro.2007.01.030

72.   Agrawal, C. M., Athanasiou, K. A., “Technique to control pH in vicinity of biodegrading PLA‐PGA implants”, Journal of biomedical materials research, Vol. 38, No. 2, (1997), 105-114. https://doi.org/10.1002/(sici)1097-4636(199722)38:2%3C105::aid-jbm4%3E3.0.co;2-u

73.   Cooper, J. J., Mackie, A. T., “In vitro evaluation of a range of bioabsorbable composite interference screws designed for anterior cruciate ligament reconstruction”, In 54th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, February 2008, (2008). https://www.ors.org/Transactions/54/1278.pdf

74.   Aunoble, S., Clément, D., Frayssinet, P., Harmand, M. F., Le Huec, J. C., “Biological performance of a new β-TCP/PLLA composite material for applications in spine surgery: In vitro and in vivo studies”, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Vol. 78, No. 2, (2006), .416-422. https://doi.org/10.1002/jbm.a.30749

75.   Purcell, D. B., Rudzki, J. R., Wright, R. W., “Bioabsorbable interference screws in ACL reconstruction”, Operative Techniques in Sports Medicine, Vol. 12, No. 3, (2004), 180-187. https://doi.org/10.1053/j.otsm.2004.07.014

76.   Pigni, M., Leardi, G., Battistella, F., Bernasconi, S., “Hamstring anterior cruciate ligament reconstruction in skiers: tibial fixation with bioabsorbable or not bioabsorbable system”, In International Congress, (2006).

77.   Poandl, T., Trenka-Benthin, S., Azri-Meehan, S., Contiliano, J., Li, Y., Yuan, J., TenHuisen, K., Dooley, J., Zimmerman, M., “A new faster-absorbing biocomposite material: Long-term in-vivo tissue reaction and absorption”, E-poster presented at: Spring Arthroscopy Association of North America (AANA) Meeting, Vancouver, Canada, May 2005, (2005), E-09. http://prod.mitek.depuy.edgesuite.net/PDFsforWebsite/900858.pdf

78.   Siebold, R., “Observations on Bone Tunnel Enlargement After Double-Bundle Anterior Cruciate Ligament Reconstruction”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 23, No. 3, (2007), 291–298. http://doi.org/10.1016/j.arthro.2007.01.006

79.   LeGeros, R. Z., LeGeros, J. P., “Dense hydroxyapatite”, In An Introduction to Bioceramics, (1993), 139-180. https://doi.org/10.1142/9789814317351_0009

80.   Bailey, C. A., Kuiper, J. H., Kelly, C. P., “Biomechanical evaluation of a new composite bioresorbable screw”, Journal of Hand Surgery, Vol. 31, No. 2, (2006), 208-212. https://doi.org/10.1016/j.jhsb.2005.10.015

81.   Tecklenburg, K., Burkart, P., Hoser, C., Rieger, M., Fink, C., “Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws”, Arthroscopy: The Journal of Arthroscopic & Related Surgery, Vol. 22, No. 9, (2006), 993-999. https://doi.org/10.1016/j.arthro.2006.05.010

82.   Baums, M. H., Zelle, B. A., Schultz, W., Ernstberger, T., Klinger, H. M., “Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction”, Knee Surgery, Sports Traumatology, Arthroscopy, Vol. 14, No. 9, (2006), 865-868. https://doi.org/10.1007/s00167-006-0049-2

83.   Krappel, F. A., Bauer, E., Harland, U., “The migration of a BioScrew® as a differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases”, Archives of Orthopaedic and Trauma Surgery, Vol. 126, No. 9, (2006), 615-620. https://doi.org/10.1007/s00402-006-0101-1

84.   Wang, J., Wu, Y., Li, H., Liu, Y., Bai, X., Chau, W., Zheng, Y., Qin, L., “Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits”, Biomaterials, Vol. 157, (2018), 86-97. https://doi.org/10.1016/j.biomaterials.2017.12.007

85.   Song, B., Li, W., Chen, Z., Fu, G., Li, C., Liu, W., Li, Y., Qin, L., Ding, Y., “Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study”, Journal of Orthopaedic Translation, Vol. 8, (2017), 32-39. https://doi.org/10.1016/j.jot.2016.09.001

86.   Agarwal, S., Curtin, J., Duffy, B., Jaiswal, S., “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications”, Materials Science and Engineering: C, Vol. 68, (2016), 948-963. https://doi.org/10.1016/j.msec.2016.06.020

87.   Zheng Y. F., Gu, X. N., Witte, F., “Biodegradable metals”, Materials Science and Engineering: R: Reports, Vol. 77, (2014), 1–34. http://doi.org/10.1016/j.mser.2014.01.001

88.   Li, N., Zheng, Y., “Novel magnesium alloys developed for biomedical application: a review”, Journal of Materials Science & Technology, Vol. 29, No. 6, (2013), 489-502. https://doi.org/10.1016/j.jmst.2013.02.005

89.   Cheng, P., Han, P., Zhao, C., Zhang, S., Zhang, X., Chai, Y., “Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction”, Scientific Reports, Vol. 6, (2016), p.26434. https://doi.org/10.1038/srep26434

90.   Yao, Y., Wang, L., Li, J., Tian, S., Zhang, M., Fan, Y., “A novel auxetic structure based bone screw design: Tensile mechanical characterization and pullout fixation strength evaluation”, Materials & Design, Vol. 188, (2020), 108424. https://doi.org/10.1016/j.matdes.2019.108424

91.   Butler, D. L., “Anterior cruciate ligament: Its normal response and replacement”, Journal of Orthopaedic Research, Vol. 7, No. 6, (1989), 910-921. https://doi.org/10.1002/jor.1100070618

92.   Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C., Warren, R. F., “Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog”, The Journal of bone and joint surgery. American volume, Vol. 75, No. 12, (1993), 1795-1803. https://doi.org/10.2106/00004623-199312000-00009

93.   Beevers, D. J., “Metal vs bioabsorbable interference screws: initial fixation”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 217 No.1, (2003), 59-75. https://doi.org/10.1243/095441103762597746

94.   Roesler, C. R. M., Salmoria, G. V., Moré, A. D. O., Vassoler, J. M., Fancello, E. A., “Torsion test method for mechanical characterization of PLDLA 70/30 ACL interference screws”, Polymer Testing, Vol. 34, (2014), 34-41. https://doi.org/10.1016/j.polymertesting.2013.12.005

95.   Nyland, J., Krupp, R., Greene, J., Bowles, R., Burden, R., Caborn, D. N., “In situ comparison of varying composite tibial tunnel interference screws used for ACL soft tissue graft fixation”, The Knee, Vol. 22, No. 6, (2015), 554-558. https://doi.org/10.1016/j.knee.2015.03.009

96.   Schumacher, T. C., Tushtev, K., Wagner, U., Becker, C., große Holthaus, M., Hein, S. B., Haack, J., Heiss, C., Engelhardt, M., El Khassawna, T., Rezwan, K., “A novel, hydroxyapatite-based screw-like device for anterior cruciate ligament (ACL) reconstructions”, The Knee, Vol. 24, No. 5, (2017), 933-939. https://doi.org/10.1016/j.knee.2017.07.005

97.   Resende, J. L., Faria, M. T. C., Las Casas, E. B., Oliveira, E. A., Gomes, P. D. T. V., “Mechanical properties characterization of knee cruciate ligaments through tensile tests”, In Proceedings of the 18th International Congress of Mechanical Engineering (COBEM 2005), Ouro Preto-MG, Brazil, 6-11 November 2005, (2005), 1-7.

98.   “Arthrex BioComposite interference screws for ACL and PCL reconstruction”, LA1-0150-EN_E, Naples, FL, (2018).

99.   Kousa, P., Järvinen, T. L., Kannus, P., Järvinen, M., “Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction: biomechanical evaluation by single cycle and cyclic loading”, The American Journal of Sports Medicine, Vol. 29, No. 4, (2001), 420-425. https://doi.org/10.1177/03635465010290040601

100.         Moré, A. D. O., Pizzolatti, A. L. A., Fancello, E. A., Salmoria, G.V., Roesler, C. R. D. M., “Graft tendon slippage with metallic and bioabsorbable interference screws under cyclic load: a biomechanical study in a porcine model”, Research on Biomedical Engineering, Vol. 31, No. 1, (2015), 56-61. https://doi.org/10.1590/2446-4740.0652