Investigating the Kinetic Parameters of SiO2-Al2O3-CaO-CaF2-K2O Oxyfluoride Glass

Document Type: Original Research Article

Authors

Department of Materials Science and Engineering, University of Tabriz, Tabriz, East Azerbaijan, Iran

Abstract

Oxyfluoride glass-ceramics containing CaF2 nanocrystals are kind of attractive materials for the optical applications due to their low phonon energy and high transparency. Moreover, the crystallization control and consequently, the kinetic properties are important for oxyfluoride glasses. Therefore, in the present research, the crystallization kinetics of isochronal transformation of the 37.26SiO2-28.11Al2O3-7.73CaO-26.89CaF2-4.5 K2O (wt%) glass have been determined upon the basis of maximum transformation rate using Differential Thermal Analysis (DTA) technique. Hence, it is concluded that the crystallization of the mentioned glass is a process controlled by Avrami nucleation, three-dimensional diffusion-controlled growth, and anisotropic growth impingement mode. The effective activation energy Qp =181 kJ.mol-1, growth exponent n=2.272, nucleation activation energy QN= 123, and growth activation energy QG=211 have been determined.

Keywords

Main Subjects


 
  1. Lavín, V., Lahoz, F., Martín, I. R., Rodríguez-Mendoza, U. R., “Optical properties of rare-earth ions in transparent oxyfluoride glass-ceramics”, In Balda, R., ed., Photonic Glasses, Research Signpost, Kerala, India, (2006), 115-149. https://www.academia.edu/download/46573097/54-Photonic_Glasses_Chapter_6.pdf
  2. Upadhyaya, G. S., “Holland, W., Beall, G.: Glass-Ceramic Technology, "The American Ceramic Society", Westerville, OH, USA, 2002, pp. 372”, Science of Sintering,Vol. 36, No. 3, (2004), 215-216. https://doi.org/10.2298/sos0403216u
  3. Gonçalves, C. M., Santos, L. F., Almeida, R. M., “Rare-earth-doped transparent glassceramics”, Comptes Rendus Chimie, Vol.5, No. 12, (2002), 845–854. https://doi.org/10.1016/S1631-0748(02)01457-1
  4. Farahinia, L., Rezvani, M., “Luminescence Properties of Oxyfluoride Glass and Glass-ceramic Doped with Y3+ Ions”, Advanced Ceramics Progress, vol. 1, No. 1, (2015), 6-10. https://dx.doi.org/10.30501/acp.2015.70000
  5. Adam, J, L., “Non-oxide glasses and their application in optics”,  Journal of Non-Crystalline Solids, Vol. 287, No. 1-3, (2001), 401–404. https://doi.org/10.1016/S0022-3093(01)00632-9
  6. Adam, J. L., “Lanthanides in Non-Oxide Glasses”, Chemical Reviews, Vol. 102, No. 6, (2002), 2461–2476. https://doi.org/10.1021/cr010305b
  7. Dejneka, M. J, “Transparent oxyfluoride glass ceramics”, Materials Research Society Bulltin, Vol. 23, No. 11, (1998), 57–62. https://doi.org/10.1557/s0883769400031018
  8. Qiao, X., Fan, X., Wang, M., “Luminescence behavior of Er3+ in glass ceramics containing BaF2 nanocrystals”, Scripta Materialia”, Vol. 55, No. 3, (2006), 211-214. https://doi.org/10.1016/j.scriptamat.2006.04.023
  9. Ye, S., Zhu, B., Chen, J., Luo, J., Qiu, J. R., “Infrared quantum cutting in Tb3+, Yb3+ co-doped transparent glass ceramics containing CaF2 nanocrystals”, Appllied Physics Letters, Vol. 92, No. 14, (2008), 141112. https://doi.org/10.1063/1.2907496
  10. Moharram, A. H., Abdel-Baset, A. M., Shokr, F. S., “Crystallization kinetics of the Se80Te15Sb5 glass”, Chalcogenide Letters, Vol. 13, No. 9, (2016), 435–442. http://chalcogen.ro/435_MoharramAH.pdf
  11. Liu, F., Song, S. J., Sommer, F., Mittemeijer, E. J., “Evaluation of the maximum transformation rate for analyzing solid-state phase transformation kinetics”, Acta Materialia, Vol. 57, No. 20, (2009), 6176–6190. https://doi.org/10.1016/j.actamat.2009.08.046
  12. Liu, F., Sommer, F., Bos, C., Mittemeijer, E. J., “Analysis of Solid State Phase Transformation Kinetics: Model and Recipes”, International Materials Reviews, Vol. 52, No. 4, (2007), 193-212. https://doi.org/10.1179/174328007X160308
  13. Mittemeijer. E. J., “Analysis of the kinetics of phase transformations”, Journal of Materials Science, Vol. 27, No. 15, (1992) 3977-3987. https://doi.org/10.1007/bf01105093
  14. Kishi, Y., Tanabe, S., “Infrared-to-visible up-conversion of rare-earth doped glass ceramics containing CaF2 crystalsˮ, Journal of Alloys and Compounds, Vol. 408, (2006), 842-844. https://doi.org/10.1016/j.jallcom.2005.01.096
  15. Babu, P., Jang, K. H., Kim, E. S, Shi, L., Seo, H. J., “Optical Properties and White-Light Emission in Dy3+-Doped Transparent Oxy-fluoride Glass and Glass Ceramics Containing CaF2 Nanocrystalsˮ, Journal of the Korean Physical Society, Vol. 54, No. 4, (2009), 1488-1491. https://doi.org/10.3938/jkps.54.1488 
  16. Sun, X. Y., Gu, M., Huang. S. M, Jin, X. J., Liu, X. L., Liu, B., Ni, C., “Luminescence behavior of Tb3+ ions in transparent glass and glass-ceramics containing CaF2 nanocrystalsˮ, Journal of Luminescence, Vol. 129, No. 8, (2009), 773-777. https://doi.org/10.1016/j.jlumin.2009.02.017
  17. Sun, X. Y. and Huang. S. M., “Tb3+-activated SiO2–Al2O3–CaO–CaF2 oxyfluoride scintillating glass ceramicsˮ, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 621, No 1-3, (2010), 322-325. https://doi.org/10.1016/j.nima.2010.04.032
  18.  Farahinia, L., Rezvani, M., “Optical property evaluation of oxy-fluoride glasses doped with different amounts of Y3+ ionsˮ, Journal of Non-crystalline Solids, Vol.425, (2015), 158-182. https://doi.org/10.1016/j.jnoncrysol.2015.03.014
  19. Imanieh, M. H., EftekhariYekta, B., Marghussian, V., Shakhesi, S., Martín, I. R., “Crystallization of nano calcium fluoride in CaF2–Al2O3–SiO2ˮ, Solid State Sciences, Vol. 17, (2013) 76–82. https://doi.org/10.1016/j.solidstatesciences.2012.11.008
  20. Liu, F., Sommer. F., Mittemeijer, E. J., “Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation and recipes for the extraction of kinetic parametersˮ, Journal of Materials Science, Vol. 42, No. 2, (2007), 573-587. https://doi.org/10.1007/s10853-006-0802-4
  21. Ouyang, Y., Wang, L., Chen, H., Cheng, X., Zhong, X., Feng, Y., “The formation and crystallization of amorphous Al65Fe20Zr15ˮ, Journal of Non-Crystalline Solids, Vol. 354, No.52-54, (2008), 5555-5558. https://doi.org/10.1016/j.jnoncrysol.2007.02.099