Experimental and Numerical Evaluation of Diffusion Welding of 7075 Aluminum and AZ31 Magnesium Alloys

Document Type : Original Research Article

Authors

1 Department of Materials Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Semnan, Iran

2 Department of Mechanical Engineering, Faculty of Engineering, Ilam University, Ilam, Ilam, Iran

Abstract

In the present study, AZ31 magnesium alloy was bonded to 7075 aluminum alloy at different temperatures (393, 402, 412, and 421 °C) and diffrent holding times (25, 60, and 120 min) through diffusion bonding. Moreover, axial loads of 12, 29, 38, and 80 MPa accompanied by vacuum condition were employed during the bonding. The experimental and numerical results of the successful joints confirmed the existence of different reactive layers in diffusion zones and formation of the predicted intermetallic compounds. Findings showed that by applying a pressure of 29 MPa at different temperatures of 402, 412, and 421 °C, Interfacial Transition Zone (ITZ) with thicknesses of 21.26, 21.96, and 22.60 μm, respectively, was formed. Further, the maximum amount of the bond strength (30 MPa), resulting from the proper coalescence of metal surfaces, was obtained at 402 °C. Although the hardness of ITZ was found to be greater than that of the base metals, it could increase even more mainly as a result of an increase in the bonding temperature. Moreover, the results of simulation, using DEFORM-3D software, indicated that the ITZ had different mechanical properties from base metals and that by analyzing the effective stress, the Mg alloy specimen was more deformed than Al alloy during the joining process.

Keywords

Main Subjects


1.     Mahendran, G., Balasubramanian, V., Senthilvelan, T., “Developing diffusion bonding windows for joining AZ31B magnesium–AA2024 aluminium alloys”, Materials & Design, Vol. 30, No. 4, (2009), 1240-1244. https://doi.org/10.1016/j.matdes.2008.06.015
2.     Sun, D. Q., Gu, X. Y., Liu, W. H., “Transient liquid phase bonding of magnesium alloy (Mg–3Al–1Zn) using aluminium interlayer”, Materials Science and Engineering: A, Vol. 391, No.1-2, (2005), 29-33. https://doi.org/10.1016/j.msea.2004.06.008
3.     Aydın, K., Kaya, Y., Kahraman, N., “Experimental study of diffusion welding/bonding of titanium to copper”, Materials & Design, Vol. 37, (2012), 356-368. https://doi.org/10.1016/j.matdes.2012.01.026
4.     Guo, Y., Qiao, G., Jian, W., Zhi, X., “Microstructure and tensile behavior of Cu-Al multi-layered composites prepared by plasma activated sintering”, Materials Science and Engineering: A, Vol. 527, No. 20, (2010), 5234-5240. https://doi.org/10.1016/j.msea.2010.04.080
5.     Nami, H., Halvaee, A., Adgi, H., Hadian, A., “Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite”, Materials & Design, Vol. 31, No. 8, (2010), 3908-3914. https://doi.org/10.1016/j.matdes.2010.03.007
6.     Hadian, R., Emamy, M., Varahram, N., Nemati, N., “The effect of Li on the tensile properties of cast Al–Mg2Si metal matrix composite”, Materials Science and Engineering: A, Vol. 490, No. 1-2, (2008), 250-257. https://doi.org/10.1016/j.msea.2008.01.039 7.     Somekawa, H., Watanabe, H., Mukai, T., Higashi, K., “Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy”, Scripta Materialia, Vol. 48, No. 9, (2003), 1249-1254. https://doi.org/10.1016/S1359-6462(03)00054-X
8.     Fernandus, M. J., Senthilkumar, T., Balasubramanian, V., “Developing Temperature–Time and Pressure–Time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys”, Materials & Design, Vol. 32, No. 3, (2011), 1651-1656. https://doi.org/10.1016/j.matdes.2010.10.011
9.     Jafarian, M., Khodabandeh, A., Manafi, S., “Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer”, Materials & Design (1980-2015), Vol. 65, (2015), 160-64. https://doi.org/10.1016/j.matdes.2014.09.020
10.   Samanta, A., Xiao, S., Shen, N., Li, J., Ding, H., “Atomistic simulation of diffusion bonding of dissimilar materials undergoing ultrasonic welding”, The International Journal of Advanced Manufacturing Technology, Vol. 103, No. 1, (2019), 879-890. https://doi.org/10.1007/s00170-019-03582-9
11.   Kumar, S. S., Ravisankar, B., Sheriff, M. A., Silvister, M. J., “Thermal Analysis of Dissimilar Materials Diffusion Bonding Using Finite Element Method”,In Materials Science Forum,Vol. 969, (2019), 858-863. Trans Tech Publications Ltd.https://doi.org/10.4028/www.scientific.net/MSF.969.858
12.   Ding, Y., Ju, D., “Finite Element Analysis of Residual Stress in the Diffusion Zone of Mg/Al Alloys”, Advances in Materials Science and Engineering, Vol. 2018, (2018), 1-8. https://doi.org/10.1155/2018/1209849
13.   Mahendran, G., Balasubramanian, V., Senthilvelan, T., “Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg”, Advances in Materials Research: AMR, Vol. 1, No. 2, (2012), 147-160. https://doi.org/10.12989/amr.2012.1.2.147
14.   Zhang, M. X., Huang, H., Spencer, K., Shi, Y. N., “Nanomechanics of Mg–Al intermetallic compounds”, Surface and Coatings Technology, Vol. 204, No. 14, (2010), 2118-2122. https://doi.org/10.1016/j.surfcoat.2009.11.031
15.   Zuruzi, A. S., Li, H., Dong, G., “Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air”, Materials Science and Engineering: A, Vol. 270, No. 2, (1999), 244-248. https://doi.org/10.1016/S0921-5093(99)00188-4
16.   Derby, B., Wallach, E. R., “Theoretical model for diffusion bonding”, Metal Science, Vol. 16, No. 1, (1982), 49-56. https://doi.org/10.1179/030634582790427028
17.   Derby, B., Wallach, E. R., “Diffusion bonding: development of theoretical model”, Metal Science, Vol. 18, No. 9, (1984), 427-431. https://doi.org/10.1179/030634584790419809
18.   Elzey, D. M., Wadley, H. N. G., “Modeling the densification of metal matrix composite monotape”, Acta Metallurgica et Materialia, Vol. 41, No. 8, (1993), 2297-2316. https://doi.org/10.1016/0956-7151(93)90312-G
19.   Zhang, J., Shen, Q., Luo, G., Li, M., Zhang, L., “Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer”, Materials & Design, Vol. 39, (2012), 81-86. https://doi.org/10.1016/j.matdes.2012.02.032
20.   Mofid, M. A., Loryaei, E., “Investigating microstructural evolution at the interface of friction stir weld and diffusion bond of Al and Mg alloys”, Journal of Materials Research and Technology, Vol. 8, No. 5, (2019), 3872-3877. https://doi.org/10.1016/j.jmrt.2019.06.049
21.   Srinivasan, D., Subramanian, P. R., “Kirkendall porosity during thermal treatment of Mo–Cu nanomultilayers”, Materials Science and Engineering: A, Vol. 459, No. 1-2, (2007), 145-150. https://doi.org/10.1016/j.msea.2007.01.037
22.   Gao, M., Mei, S., Li, X., Zeng, X., “Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer”, Scripta Materialia, Vol. 67, No. 2, (2012), 193-196. https://doi.org/10.1016/j.scriptamat.2012.04.015
23.   Liu, L., Ren, D., “A novel weld-bonding hybrid process for joining Mg alloy and Al alloy”, Materials & Design, Vol. 32, No. 7, (2011), 3730-3735. https://doi.org/10.1016/j.matdes.2011.03.050
24.   Wang, J., Yajiang, L., Wanqun, H., “Interface microstructure and diffusion kinetics in diffusion bonded Mg/Al joint”, Reaction Kinetics and Catalysis Letters, Vol. 95, No. 1, (2008), 71-79. https://doi.org/10.1007/s11144-008-5259-9
25.   Firouzdor, V., Kou, S., “Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding”, Metallurgical and Materials Transactions A, Vol. 41, No. 12, (2010), 3238-3251. https://doi.org/10.1007/s11661-010-0366-4
26.   Mahendran, G., Balasubramanian, V., Senthilvelan, T., “Influences of diffusion bonding process parameters on bond characteristics of Mg-Cu dissimilar joints”, Transactions of Nonferrous Metals Society of China, Vol. 20, No. 6, (2010), 997-1005. https://doi.org/10.1016/S1003-6326(09)60248-X
27.   Li, Y., Wu, Z., “Microstructural Characteristics and Mechanical Properties of 2205/AZ31B Laminates Fabricated by Explosive Welding”, Metal, Vol. 7, No. 4, (2017), 125. https://doi.org/10.3390/met7040125
28.   Mei, R., Bao, L., Cai, B., Li, C., Liu, X., “Piecewise modeling of flow stress of 7075-T6 aluminum alloy in hot deformation”, Materials Transactions, Vol. 57, No. 7, (2016), 1147-1155. https://doi.org/10.2320/matertrans.M2015465