Synthesis and Characterization of Palladium Impregnated MIL-53(Fe) as Cathode Material of Supercapacitor

Document Type : Original Research Article

Authors

1 Department of Semiconductors, Materials and Energy Research Center (MERC), Meshkindasht, Alborz, Iran

2 Chemistry & Chemical Engineering Research Center of Iran, Tehran, Tehran, Iran

Abstract

Recently, Metal Organic Frameworks (MOFs) have been widely applied due to their high energy storage capacitance, customizable pore sizes, and open metal sites; however, their application in the form of electrode materials has been restricted due to their poor electrical conductivity. The present study reports the fast synthesis of MIL-53(Fe) and Pd/MIL-53(Fe) using the solvothermal method. To assess the electrochemical potential of materials and better understand the role of palladium in the presence of MOF, the electrodes of materials were constructed and electrochemical performances of both samples were investigated based on cyclic voltammetry in 6 M KOH electrolyte. Due to the existence of Pd in redox reaction and larger surface area, the Pd/MIL-53(Fe) showed greater electrochemical efficiency  and higher specific capacitance than MIL-53(Fe). The obtained results also indicated that designing MOF via decoration of noble metal nanoparticle (MOF/noble metal) would find potential applications in the field of supercapacitors and catalysis.

Highlights

Google Scholar

Keywords

Main Subjects


Open Access

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

  1. Wang, Y. S., Chen, Y. C., Li, J. H., Kung, C. W., “Toward Metal–Organic‐Framework‐Based Supercapacitors: Room‐Temperature Synthesis of Electrically Conducting MOF‐Based Nanocomposites Decorated with Redox‐Active Manganese”, European Journal of Inorganic Chemistry, Vol. 2019, No. 26, (2019), 3036-3044. https://doi.org/10.1002/ejic.201900676
  2. Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G., Chen, B., “Emerging multifunctional metal–organic framework materials ”, Advanced Materials, Vol.  28, No. 40,  (2016), 8819-8860. https://doi.org/10.1002/adma.201601133
  3. Lu, G., Li, S., Guo, Z., Farha, O.K., Hauser, B.G., Qi, X., Wang, Y., Wang, X., Han, S., Liu, X., DuChene, J.S.,  “Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation”, Nature chemistry, Vol. 4, No. 4,  (2012), 310-316. https://doi.org/10.1038/nchem.1272
  4. Chameh, B., Moradi, M., Hessari, F.A., “Decoration of metal organic frameworks with Fe2O3 for enhancing electrochemical performance of ZIF-(67 and 8) in energy storage application”, Synthetic Metals, Vol. 269,  (2020), 116540. https://doi.org/10.1016/j.synthmet.2020.116540
  5. Chameh, B., Moradi, M., Kaveian, S., “Synthesis of hybrid ZIF-derived binary ZnS/CoS composite as high areal-capacitance supercapacitor”, Synthetic Metals, Vol. 260,  (2020), 116262. https://doi.org/10.1016/j.synthmet.2019.116262
  6. Deng, T., Zhang, W., Arcelus, O., Wang, D., Shi, X., Zhang, X., Carrasco, J., Rojo, T., Zheng, W., “Vertically co-oriented two dimensional metal-organic frameworks for packaging enhanced supercapacitive”, Communications Chemistry, Vol. 1, No. 1, (2018), 1-9. https://doi.org/10.1038/s42004-017-0005-8
  7. Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydin, A. O., Hupp, J. T., “Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?”, Journal of the American Chemical Society, Vol.  134, No. 36, (2012), 15016-15021.https://doi.org/10.1021/ja3055639
  8. Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Llabrés, I., Xamena, F. X., Gascon, J., “Metal–organic framework nanosheets in polymer composite materials for gas separation”, Nature materials, Vol. 14, No. 1, (2015) ,48-55. https://doi.org/10.1038/nmat4113
  9. Corma, A., García, H., Llabrés, I., Xamena, F. X., “Engineering metal organic frameworks for heterogeneous catalysis”, Chemical reviews, Vol. 110, No. 8, (2010), 4606-4655. https://doi.org/10.1021/cr9003924
  10. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J. F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J. S., Hwang, Y. K., Marsaud, V., Bories, P. N., Cynober, L., Gil, S., Férey, G., Couvreur, P., Gref, R., “Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging”, Nature materials,  Vol. 9, No. 2, (2010), 172-178. https://doi.org/10.1038/nmat2608
  11. Liu, Y. P., Zhao, S. F., Guo, S. X., Bond, A. M., Zhang, J., Zhu, G., Hill, C. L., Geletii, Y. V., “Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10–”, Journal of the American Chemical Society, Vol. 138, No. 8, (2016), 2617-2628. https://doi.org/10.1021/jacs.5b11408
  12. Deng, T., Lu, Y., Zhang, W., Sui, M., Shi, X., Wang, D., Zheng, W., “Inverted Design for High‐Performance Supercapacitor Via Co(OH)2‐Derived Highly Oriented MOF Electrodes”, Advanced Energy Materials, Vol. 8, No. 7, (2018), 1702294. https://doi.org/10.1002/aenm.201702294
  13. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G., Williams, I. D., “A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n”, Science., Vol. 283, No. 5405, (1999), 1148-1150. https://doi.org/10.1126/science.283.5405.1148
  14. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P., Wang, B.,“Metal–organic frameworks for energy storage: Batteries and supercapacitors”, Coordination Chemistry Reviews, Vol 307, (2016), 361-381. https://doi.org/10.1016/j.ccr.2015.09.002
  15. Hu, J., Wu, X., Zhang, Q., Gao, M., Qiu, H., Huang, K., Feng, S., Wang, T., Yang, Y., Liu, Z., Zhao, B., “Highly active PdNi/RGO/polyoxometalate nanocomposite electrocatalyst for alcohol oxidation”, Langmuir, Vol. 34, No. 8,  (2018), 2685-2691. https://doi.org/10.1021/acs.langmuir.7b04031
  16. Yan, Y., Wang, T., Li, X., Pang, H., Xue, H., “Noble metal-based materials in high-performance supercapacitors”, Inorganic Chemistry Frontiers, Vol. 4, No. 1, (2017), 33-51. https://doi.org/10.1039/c6qi00199h
  17. Mensing, J. P., Lomas, T., Tuantranont, A.,“Ammonia strengthened graphene/CNT-wrapped polyaniline-nanofiber composites loaded with palladium nanoparticles for coin cell supercapacitors”, Electrochimica Acta, Vol. 263, (2018), 17-25. https://doi.org/10.1016/j.electacta.2017.12.193
  18. Orooji, Y., Ghanbari, M., Amiri, O., Salavati-Niasari, M.,“Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity”, Journal of Hazardous Materials, Vol. 389, (2020), 122079. https://doi.org/10.1016/j.jhazmat.2020.122079
  19. Ghanbari, M., Salavati-Niasari, M.,“facile sonochemical synthesis and photocatalytic activity for removal of organic dyes”, Inorganic chemistry, Vol. 57, No. 18, (2018),   11443-11455. https://doi.org/10.1021/acs.inorgchem.8b01293
  20. Karami, M., Ghanbari, M., Amiri, O., Salavati-Niasari, M., “Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method”, Separation and Purification Technology, Vol. 253, (2020), 117526. https://doi.org/10.1016/j.seppur.2020.117526
  21. Gholamrezaei, S., Amiri, M., Amiri, O., Salavati-Niasari, M., Moayedi, H.,“Ultrasound-accelerated synthesis of uniform SrMnO3 nanoparticles as water-oxidizing catalysts for water splitting systems”, Ultrasonics Sonochemistry, Vol. 62, (2020), 104899. https://doi.org/10.1016/j.ultsonch.2019.104899
  22. Tian, X. X., Gholamrezaei, S., Amiri, O., Ghanbari, M., Dashtbozorg, A., Salavati-Niasari, M.,“Zn2MnO4/ZnO nanocomposites: One step sonochemical fabrication and demonstration as a novel catalyst in water splitting reaction”, Ceramics International, Vol. 46, No. 16, (2020), 25789-25801. https://doi.org/10.1016/j.ceramint.2020.07.058
  23. Sabo, M., Henschel, A., Froede, H., Klemm, E., Kaskel, S.,“Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties”, Journal of Materials Chemistry, Vol. 17, No. 36, (2007), 3827-3832. https://doi.org/10.1039/b706432b
  24. Ishida, T, Nagaoka, M, Akita, T,Haruta, M.,“Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols”, Chemistry–A European Journal, Vol. 14, No. 28, (2008),  8456-8460. https://doi.org/10.1002/chem.200800980
  25. Zhang, Y., Li, G., Lu, H., Lv, Q., Sun, Z., “Synthesis, characterization and photocatalytic properties of MIL-53 (Fe)–graphene hybrid materials”, RSC advances, Vol. 4, No. 15, (2014), 7594-7600. https://doi.org/10.1039/c3ra46706f