Effect of nano and micron WO3 on microstructure and electrical properties of lead free potassium sodium niobate piezoceramics

Authors

1 Ceramic Department, Material and Energy Research Center (MERC)

2 Ceramic , Merc

Abstract

Lead free potassium sodium niobate (KNN) piezoceramics were synthesized via conventional solid state sintering route. Nano and micron WO3 were separately added to KNN through ball-milling. Dielectric and piezoelectric properties of samples sintered in the temperature range of 1110°-1145°C were measured by precision LCR-meter and APC d33-meter devices. The results revealed that micron WO3 particles were effective in inhibiting the grain growth in KNN ceramics. Micron WO3-added KNN obtained much finer microstructure and the sintering process terminated at higher temperature compared to pure KNN and nano WO3-added KNN. Densification and electrical properties of KNN were considerably affected by using nano and micron WO3. Nano WO3-added KNN obtained its maximum density at lower sintering temperature compared to micron WO3-added KNN. With increasing the sintering temperature over optimum amounts, the density of both WO3-added KNN samples decreased due to the evaporation of alkalis. Finally, at 1125ºC KNNW3n showed d33, εr, tanδ, and Qm of 75 pC/N, 345, 2%, and 50, respectively. For KNNW3m sample at 1135ºC these values were 81 pC/N, 773, 3.3%, and 30, respectively.

Keywords

Main Subjects


1.      C. Wattanawikkam, S.  Chootin, T. Bongkam, "Crystal Structure, Microstructure, Dielectric and Piezoelectric Properties of Lead• Free KNN Ceramics Fabricated via Combustion Method," Ferroelectrics,473 (2014)24-33.

2.       J. Rodel, W. Jo,  K. T. P. Seifert,  E.-M.  Anton, T. Granzow, and D. Damjanovic,  "Perspective on the Development of Lead-free Piezoceramics,"   Journal   of  American   Ceramic  Society,  92 (2009) 1153-77.

3.       S-Y Liu, S.  Liu, D-J. Li, Y. Shen, H.  Dang, Y. Liu, W. Xue, and S. Wang, "Structure, Phase Transition, and Electronic Properties of K1-xNaxNb03Solid  Solutions from First-Principles  Theory", Journal  of American   Ceramic Society,  97[12] (2014) 4019-4023.

4.       A.  B.  Haugen,  F. Madara, L.  P.  Bjerkeng, T. Grande, M. A. Einarsrud, "Sintering   of   sub-micron   Ko.5Na0.5Nb03  powders fabricated by spray pyrolysis", Journal of European  Ceramic Society, 35 (2015)  1449-1457.

5.       R.  E. Jager,  L.  Egerton, "Hot  Pressing of Potassium-Sodium Niobates", Journal of American  Ceramic Society, 45, 5  (1962) 209-213.

6.      Y. Zhen, J.-F.  Li, K. Wang, Y. Yan, and L. Yu, "Spark plasma sintering of Li/Ta-modified (K,Na)Nb03 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior," Materials Science Engineering:B,  176 (2011) 1110-14.

7.       V.  Bobnar, B.  Malic, J.  Hole, M.  Kosec,  R.  Steinhausen, and H. Beige, "Electrostrictive effect in lead-free relaxor Ko.5Nao.5Nb03- SrTi03 ceramic system,"  Journal of Applied Physics, 98 (2005) 024113-4.

8.       R.-C. Chang, S.-Y. Chu,  Y.-P. Wong,  C.-S.   Hong, and H.-H. Huang, "The effects of sintering temperature on the properties of lead-free (Nao.sKo.s)Nb03-SrTi03  ceramics,"  Journal  of Alloys & Compound,456.(2008) 08-312.

9.       P. Bomlai, P.  Sinsap, S. Muensit, and S. J.  Milne, "Effect ofMnO on  the  Phase  Development, Microstructures,  and  Dielectric Properties  of  0.95Nao.sKo.5Nb03-0.05LiTa03       Ceramics," Journal of American  Ceramic Society,91 (2008) 624-27.

10.   R.-C.  Chang, S.-Y.  Chu, Y.-F.  Lin, C.-S.   Hong, and Y.-P.  Wong, "An  investigation  of (Na05Ko.5)Nb03-CaTi03   based lead-free ceramics and surface acoustic wave devices," Journal of European  Ceramic Society,27(2007) 4453-60.

11.   Y.  Guo,  K.-i.   Kakimoto, and H.  Ohsato,  "Phase transitional behavior and piezoelectric properties of(Nao5Ko5)Nb03-LiNb03 ceramics," Applied Physics Letters,85 (2004) 4121-3.

12.     H. Du,  F.  Tang,  D. Liu,  D. Zhu,  W.  Zhou,  and S.  Qu,  "The microstructure and ferroelectric properties of (Ko5Na05)Nb0r LiNb03  lead-free  piezoelectric  ceramics," Materials  Science &Engineering.:B,  136 (2007) 165-169.

13.  K. Higashide, K. Kakimoto, and H. Ohsato, "Temperature dependence            on       the       piezoelectric       property       of (l-x)(Nao5Ko5)Nb03-xLiNb03  ceramics,"  Journal  of European  Ceramic Society,27 (2007) 4107-10.

14.   Z.  Yang, Y. Chang, B. Liu, and L. Wei,  "Effects of composition on phase structure, microstructure and electrical properties of (Ko5Na05)NbOrLiSb03 ceramics,"  Materials  Science  & Engineering: A,  432 ( 2006) 292-298.

15.     J. Wu, D. Xiao, Y. Wang, J. Zhu, and P. Yu, "Effects ofK content on the dielectric,  piezoelectric, and ferroelectric properties  of 0.95(K,Na1 _  ,)Nb03  -  0.05LiSb03 lead-free ceramics,", Journal of Applied Physics,l 03 (2008) 024102-4.

16.   R. Zuo, X. Fang, and C. Ye, "Phase  structures and electrical properties of new  lead-free (Nao5Ko5)Nb03   - (Bio5Nao5)Ti03 ceramics," Applied Physics Letters,90 (2007) 092904-3.

17.    R. Singh, K. Kambale, A. R. Kulkarni, and C.  S. Harendranath, "Structure composition correlation in KNN-BT ceramics -  An X-ray diffraction and Raman spectroscopic investigation," Materials Chemistry & Physics,  138 (2013) 905-8

18.     Y. Saito,  H.  Takao,  T.   Tani,  T. Nonoyama,  K. Takatori,  T. Homma, et al.,  "Lead-free piezoceramics," Nature, 432 (2004) 84-87.

19.    R.   Hayati  and  A.   Barzegar,   "Microstructure  and  electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive," Materials Science & Engineering:B, 172 (2010) 121-26.

20.    Z.-Y.  Shen, Y.  Xu,  and J.-F.   Li,  "Enhancement of o, in CuO• doped compositionally optimized Li/Ta-modified (Na,K)Nb03 lead-free piezoceramics,"  Ceramics  International,  3 8  (2012) 331-34.

21.    T. Yamanaka, T. Okada, Y.  Nakamoto, and K. Ohi,  "Pressure Dependence of Electron Density Distribution of Ferroelectric KNb03 Polymorphs  by   Maximum Entropy  Method (MEM) Using  Single  Crystal Diffraction  Study",  Materials  Research Society Symposium  and Proceedings,987,  (2007) 05-03.

22.     B.  P.  Zhang, L. M.  Zhang, J. F.  Li,  X. N.  Ding, & H.  L. Zhang, "Effect  of  sintering  temperature  on  electrical  properties  of Nao.sKo.5NbO)ead-free piezoelectric ceramics prepared by normal sintering", Ferroelectrics,358 (2007)188-195.

23.   R.G Zu, M. Wang, B.  Ma, J. Fu, T.  Li "Sintering and electrical properties of Na05Ko.5Nb03ceramics  modified with lanthanum and iron oxides", Journal  of Physics and Chemistry of Soids, 70, (2009) 750-754.

24.   Y. Cui, X.  Liu, M. Jiang, X. Zhao, X. Shan, W. Li, C. Yuan & C. Zhou, "Lead-free  (Baos5Cao1s)(Tio.9Zro.1)0rCe02ceramics    with high piezoelectric coefficient obtained by low-temperature sintering", Ceramics International,38 (2012) 4761--4764.

25.   M. Gangulya, S.K. Rout, T.P. Sinha, S.K.  Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, "Characterization and Rietveld Refinement of A-site deficient Lanthanum doped Barium Titanate", Journal of Alloys and Compound,  579 (2013) 473--484.

26.    E.R. Nielsen,  E. Ringgaard, M. Kasee, "Liquid-phase sintering of Pb(Zr,Ti)03using Pb0-W03 additive", Journal of European Ceramic Society, 22 (2002) 1847-1855.

27.     Z. Zhang,  L.  Lu,  C.   Shu, P.   Wu,  W.  Song, "Ferroelectrical properties  of  W-doped  lead  zirconate  titanate",  Journal   of Applied Phyics,102 (2007) 074119.