Preparation and Characterization of TiO2 Nanoparticles Prepared by Sol-Gel Method

Authors

1 Department of Engineering, Maybod Branch, Islamic Azad University, Maybod

2 Department of Engineering, Islamic Azad University

3 Department of Engineering, Quchan Branch, Islamic Azad University, Quchan

Abstract

In this study, TiO2 nanoparticles have been synthesized by sol-gel method. Then, the effects of the different pHs, stirring times, surfactants (CTAB and Span 20) and temperatures on TiO2 nanoparticles were studied. The X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) analyses were used to characterize the samples. The observations revealed that, the pH of 3.5 and 36 h stirring time could provide dispersion without agglomeration in nanoparticle powder with rutile and anatase phases. However, at higher pH, the powder resulted in the formation of anatase phase. Implementing CTAB as a surfactant modified the shape, size, and distribution of TiO2 nanoparticles better than the Span 20 as a surfactant. Finally, the nanopowder was calcined at 450, 550 and 650 °C. It obviously showed thatby increasing the temperature, the size of nanoparticles increased which might be due to accelerate the crystal growth of titanium dioxide at high calcination temperature.

Keywords

Main Subjects


1. Saja, S., Taweel, A. and Haider, R., "New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method", Journal of Chemical and Pharmaceutical Research, Vol. 8, No. 2, (2016), 620-626.

2. Zielinska, B. and Borowiak-palen, E., "A study on the synthesis, characterization and photocatalytic activity of TiO2 derived nanostructures", Materials Science-Poland, Vol. 3, (2010),626- 639.

3. Choia, H., Stathatos, E. and Dionysios, D., "Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications", Applied Catalysis B: Environmental, Vol. 63, (2006), 60-67.

4. Venkatachalam, N., Palanichamy, M. and Murugesan.,V, "Sol– gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4chlorophenol", Journal of Molecular Catalysis A: Chemical, Vol. 273, (2007), 177-185.

5. Kamil. F., Hubiter, K., Abed, T.K. and Amiery, A.A., "Synthesis of Aluminum and Titanium Oxides Nanoparticles via Sol-Gel Method: Optimization for the Minimum Size", Journal of nanoscience and technology, Vol. 2, No. 1, (2016), 37-39.

6. Divya, C., Janarthanan, B., Premkumar, S. and Chandrasekaran, J., "Titanium dioxide nanoparticles preparation for dye sensitized solar cells applications using sol-gel method", Journal of advanced physical sciences, Vol. 1, No. 1, (2017), 4-6.

7. Peruma, S., Gnana, C., Monikanda, K. and Ananthakumar, S., "Synthesis and characterization studies of nano TiO2 prepared via sol-gel method", International Journal of Research in Engineering and Technology, Vol. 3, (2014), 651-658.

8. Behpour, M. and Chakeri, M., "Ag-doped TiO2 nanocomposite prepared by sol gel method: Photocatalytic Bactericidal Under Visible Light and Characterization", Vol. 2, (2012), 227-234.

9. Manh, N., Thanh, N. and Hoang, N., "Low-temperature synthesis of nano-TiO2 anatase on nafion membrane for using on DMFC", Journal of Physics: Conference Series, Vol. 187, (2009), 1-6.

10. Jimmy, C., Jiaguo, Y., Wingkei, Y. and Zhang, L., "Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation", Chemical Communications, (2001), 1942-1943.

11. Macwan, D.P., Pragnesh, N. and Dave, N., "A review on nano- TiO2 sol–gel type syntheses and its applications", Journal of Materials Science, Vol.46, (2011), 3669-3686.

12. Miao, Z., Xu, D., Ouyang, J., Guo, G., Zhao, X. and Tang, Y., "Electrochemically induced sol−gel preparation of singlecrystalline TiO2 nanowires", Nano Letters, Vol. 7, (2002), 716- 720.

13. Choi, H., Stathatos, E. and Dionysios, D., "Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications", Applied Catalysis B: Environmental ,Vol. 63, (2006), 60-67.

14. Zaleska, A., "Doped-TiO2: A review", Recent patents on Engineering ,Vol. 2, (2008), 157-164.

15. Harold, P. and Alexander, E.K., "Xray diffraction procedures for polycrystalline and amorphous materials", Willy, New York, (1974).

16. Vetrivel, D., Rajendran, K. and Kalaiselv, V., "Synthesis and characterization of pure titanium dioxide nanoparticles by solgel method", International Journal of Chem Tech Research, Vol. 7, (2015), 1090-1097.

17. Yang, J., Mei, S. and Ferreira, J., "Surface and sorption properties of TIO2 nanotubes, synthesized by electrochemical anodization", Materials Science and Engineering: C, Vol. 15, (2001), 183-190.

18. Novakovic, R. and Korthaus, B., "Advanced Ceramics for Use in Highly Oxidizing and Corrosive Environment", Trans Tech Publications Ltd, Switzerland, (2001).

19. Billik, P. and Plesch, G., "Mechanochemical synthesis of nanocrystalline TiO2 from liquid TiCl4", "Scripta material, Vol. 56, (2007), 979-982.

20. Li, J.G., Kamiyama, H., Wang, X.H., Moriyoshi, Y. and Ishigaki, T., "Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation", Journal of the European Ceramic Society, Vol. 26, (2004), 15536-15542.

21. Seok, S.I. and Kim, J.H., "Synthesis of TiO2 nanoparticles in porous silica microspheres", Materials chemistry and physics, Vol. 86, (2009), 176-182.

22. Prasad, K., Pinjari, D., Pandit, A. and Mhaske, S., "A novel approach to synthesis and characterization of titanium dioxide", Ultrasonics sonochemistry, Vol. 17, (2010), 409-415.

23. Abbas, F., Bensaha, R. and Taroré, H., "Regulation of the physical characteristics of titania nanotube", Comptes Rendus Chimie, Vol. 17, (2014), 288-275.

24. Fallah, M., Zamani-Meymian, M.-R., Rahimi, R., Rabbani, M., "In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications", Applied Surface Science, Vol. 316, (2016), 264-275.

25. Agartan, L., Kapusuz, D., Park, J. and Ozturk, A., "Effect of initial water content and calcination temperature on photocatalytic properties of TiO2 nanopowders synthesized by the sol–gel process", Ceramics International, Vol. 41, (2015), 12788-12797.

26. Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki- Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M. and Aguilar-Martínez, J., "Characterization of nanophase titania particles synthesized using in situ steric stabilization", Journal of Alloys and Compounds, Vol. 647, (2015), 1755-1765.

27. Yousefi, A., Allahverdi, A. and Hejazi, P., "Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes", Construction and Building Materials, Vol. 41, (2016), 224-230.

28. Karkare, M., "Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view", International Nano Letters, Vol. 4, (2014), 1-9.

29. Lope,. T., Gomez, R., Sanchez, E., Tzompantzi, F. and Vera, L "The effect of calcination temperature on the crystallinity of TiO2", Journal of Sol-Gel Science and Technology, Vol. 22, (2003), 363-370.

30. Milani, H. and Nasirian, S., "Decreasing of the activation energy of TiO2 nanoparticles by applying ultrasound waves using the sol-gel method", Iranian Journal of Physics Research, Vol. 11, (2012), 411-416.

31. Antoine, R., Dalod, M., Henriksen, L., Grande, T. and Einarsrud, M., "Functionalized TiO2 nanoparticles by singlestep", Journal of Nanotechnology, Vol. 8, (2017), 304-312.

32. Poursani, A., Nilchi, A., Shariat, S. and Nouri, J., "The Synthesis of Nano TiO2 and Its Use for Removal of Lead Ions from Aqueous Solution", Journal of Water Resource and Protection, Vol. 8 ,(2016), 438-448.

33. Rostami, A. and Nasiri, S.M., "Synthesis of mesoporous nanoparticles of TiO2 from ilmenite", Materials Research Express, Vol. 4, (2017), 22-30.

34. Zielinsk, B., Borowlak, E., Kalenczuk, R.J., "A study on the synthesis, characterization and photocatalytic activity of TiO2 derived nanostructures", Materials Science-Poland, Vol. 28, (2010), 585-594.

35. Gigliola, L., Corrado, B., Federica, G., Giulia, P., "Synthesis and characterization of TiO2 nanoparticles for the reduction of water Pollutants", Materials, Vol. 10, (2017), 1208-1219.

36. Qianqian, Y., Jingyu, X., Xiangdong, W., Xiaoling, G. and Tong, Z., "Preparation of highly crystalline mesoporous TiO2 by sol–gel method combined with two-step calcining process", Journal of Experimental Nanoscience, Vol. 11, No. 14, (2016), 1127-1137.

37. Divya1, C., Janarthanan, B., Premkumar, B., Chandrasekaran, J., "Titanium dioxide nanoparticles preparation for dye sensitized solar cells applications using sol-gel method", Journal of Advanced Physical Sciences, Vol. 1, No. 1, (2017) 4–6.

38. Mane, C., Pawar, R., Gaikwadc, D.,Khobare, R., "Synthesis of TiO2 nanoparticles by Microwave Assisted Sol- Gel Method", Journal of Medicinal Chemistry and Drug Discovery, Vol. 2, (2017), 580-584.

39. Doaa, M., Ammar, A., Hanan, A., Hoda, R. and Walied, A., "Preparation and Characterization of Nano Titanium Dioxide Photocatalysts Via Sol Gel Method over Narrow Ranges of Varying Parameters", Oriental journal of chemistry, Vol. 33, (2017), 41-51.