Effect of Current Density, Temperature, and Contact Paste on Flash Sintered 8YSZ

Document Type: Original Research Article

Authors

1 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran & Renewable Energy Department, Niroo Research Institute (NRI), Tehran, Iran

2 Department of Metallurgy and Materials Science, Iran University of Science and Technology, Tehran, Iran

Abstract

Flash sintering has been investigated as a modern sintering method through examining the effect of processing parameters such as current density, temperature, and contact paste on the flash sintered 8YSZ characteristic. 95% of theoretical density was achieved at 800°С in 30sec with a field intensity of 100V.cm-1 and a current density of 160mA.mm-2. Such relative density in conventional sintering achieved at 1450°С for 4 hours. Results indicated that the temperature and flash current density have positive effects on the relative density. Contact paste had a significant effect on the relative density. 8YSZ samples with LSM contact paste had a higher relative density in comparison with those flash sintered with Pt contact paste. The positive effect of LSM contact paste was more significant, especially at lower current density.

Keywords

Main Subjects


 
1.     Rahaman, M.N. ,“Ceramic processing and sintering”, Marcel Dekker, New York, USA, 1996.
2.     European Comission, Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, (2007) 210–211.
3.     Tokita, M., “Recent and future progress on advanced ceramics sintering by Spark Plasma Sintering”, Nanotechnologies in Russia, Vol. 10, No. 3-4, (2015), 261–267.
4.     Karayannis, V.G., “Microwave sintering of ceramic materials”, in IOP Conference Series: Materials Science and Engineering, Vol. 161, No. 1, (2016), 012068. IOP Publishing.
5.     Zapata-Solvas, E., Gómez-García, D., Domínguez-Rodríguez, A., Todd, R.I., “Ultra-fast and energy-efficient sintering of ceramics by electric current concentration”, Scientific Reports, Vol. 5, (2015), 8513.
6.     Cologna, M., Rashkova, B., Raj, R., “Flash sintering of nanograin zirconia in Journal of the American Ceramic Society, Vol. 93, No. 11, (2010), 3556–3559.
7.     Cologna, M., Prette, A.L., Raj, R., “Flash‐sintering of cubic yttria‐stabilized zirconia at 750° C for possible use in SOFC manufacturing”, Journal of the American Ceramic Society, Vol. 94, No. 2, (2011), 316-319.
8.     Downs, J.A., Sglavo, V.M., “Electric Field Assisted Sintering of Cubic Zirconia at 390°C”, Journal of the American Ceramic Society, Vol. 96, No. 5, (2013), 1342–1344.
9.     Hao, X., Liu, Y., Wang, Z., Qiao, J., Sun, K., “A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current”, Journal of Power Sources, Vol. 210, (2012), 86–91.
10.   Gaur, A., Sglavo, V.M., “Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C”, Journal of materials science, Vol. 49, No. 18, (2014), 6321–6332.
11.   Jiang, T., Liu, Y., Wang, Z., Sun, W., Qiao, J., Sun, K., “An improved direct current sintering technique for proton conductor – BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process”, Journal of Power Sources,Vol. 248, (2014), 70–76.
12.   Prette, A.L., Cologna, M., Sglavo, V. and Raj, R., “Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications”, Journal of Power Sources,Vol. 196, No. 4, (2011), 2061–2065.
13.   Gaur, A., Sglavo, V. M., “Flash-sintering of MnCo2O4 and its relation to phase stability”, Journal of the European Ceramic Society,Vol. 34, No. 10, (2014), 2391–2400.
14.   Shomrat, N., Baltianski, S., Randall, C.A., Tsur, Y., “Flash sintering of potassium-niobate”,Journal of the European Ceramic Society, Vol. 35, No. 7, (2015), 2209–2213.
15.   Perez‐Maqueda, L.A., Gil‐Gonzalez, E., Perejon, A., Lebrun, J.M., Sanchez‐Jimenez, P.E., Raj, R., “Flash Sintering of highly insulating nanostructured phase-pure BiFeO3”,Journal of the American Ceramic Society, Vol. 100, No. 8, (2017), 3365–3369.
16.   Trombin, F., Raj, R., “Developing processing maps for implementing flash sintering into manufacture of white ware ceramics”, American Ceramic Society Bulletin, Vol. 93, (2014), 32–35.
17.   Dong, Y., “On the Hotspot Problem in Flash Sintering, (2017). arXiv preprint arXiv:1702.05565.
18.   Sortino, E., Lebrun, J.M., Sansone, A., Raj, R., “Continuous flash sintering”, Journal of the American Ceramic Society, Vol. 101, No. 4, (2018), 1432–1440.
19.   Saunders, T., Grasso, S., Reece, M.J., “Ultrafast-Contactless Flash Sintering using Plasma Electrodes”, Scientific Reports, Vol. 6, (2016), 27222.
20.   Chaim, R., “Liquid film capillary mechanism for densification of ceramic powders during flash sintering”, Materials, Vol. 9, No. 4, (2016), 280.
21.   Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., Wilshaw, P.R., “Electrical characteristics of flash sintering: thermal runaway of Joule heating”, Journal of the European Ceramic Society, Vol. 35, No. 6, (2015), 1865–1877.
 22.   Steil, M.C., Marinha, D., Aman, Y., Gomes, J.R., Kleitz, M., “From conventional ac flash-sintering of YSZ to hyper-flash and double flash”, Journal of the European Ceramic Society Vol. 33, No. 11, (2013), 2093–2101.
23.   Baraki, R., Schwarz, S., Guillon, O., “Effect of Electrical Field/Current on Sintering of Fully Stabilized Zirconia”, Journal of the American Ceramic Society, Vol. 95, No. 1, (2012), 75–78.
24.   Dahl, P., Kaus, I., Zhao, Z., Johnsson, M., Nygren, M., Wiik, K., Grande, T., Einarsrud, M.A., “Densification and properties of zirconia prepared by three different sintering techniques”, Ceramics International, Vol. 33, No. 8, (2007),1603–1610.
25.   Borrell, A., Salvador, M.D., Peñaranda‐Foix, F.L., Cátala‐Civera, J.M, “Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties”, International Journal of Applied Ceramic Technology, Vol. 10, No. 2, (2013), 313-320.