Enhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets


1 Nano-Techology and Advanced Materials, Material and Energy Research Center (MERC)

2 Nanotechnology and Advanced Materials, Materials and Energy Research Center


α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness of < 10 nm. Optical band gap measurements revealed decrease of the band gap of α‒Fe2O3 nanoparticles from 2.65 to 2.15 eV upon loading MoS2 nanosheets. The as‒synthesized α‒Fe2O3/MoS2 nanocomposites showed a high absorption capability in the visible irradiation. Photocatalytic examinations showed over 98 % degradation of Rhudamine Blue (Rh B) organic dye within 75 min. α‒Fe2O3/MoS2 nanocomposites enhanced the rate of degradation as compared to pure α‒Fe2O3 nanoparticles and MoS2 nanosheets. 


Main Subjects

1. Awasthi, G.P., Adhikari, S.P., Ko, S., Kim, H.J., Park, Ch.H., Kim, Ch.S., "Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties", Journal of Alloys and Compounds, Vol. 682, (2016), 208-215.

2. Liu, Y., Sun, L.i, Wu, J., Fang, T., Cai, R., Wei, A., "Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites", Materials Science and Engineering: B, Vol. 194, (2015), 9-13.

3. Guo, Sh., Zhang, G., Wang, J., "Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism", Journal of Colloid and Interface Science, Vol. 433, (2014), 1- 8.

4. Borges, M.E., Sierra, M., Méndez-Ramos, J., Acosta-Mora, P., Ruiz-Morales, J.C., Esparza, P., "Solar degradation of contaminants in water: TiO2 solar photocatalysis assisted by upconversion luminescent materials", Solar Energy Materials & Solar Cells, Vol. 155, (2016), 194-201.

5. Kurnianditia Putri, L.i, Tan, L.-L., Ong, W.J., Chang, W.S., Chai, S.P., "Graphene oxide: Exploiting its unique properties toward visible-light-driven photocatalysis", Applied Materials Today, Vol. 4, (2016), 9-16.

6. Li, M., Huang, H.i, Yu, S., Tian, N., Dong, F., Du, X., Zhang, Y., "Simultaneously promoting charge separation and photoabsorption of BiOX (X= Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar", Applied Surface Science, Vol. 386, (2016), 285-295.

7. Sohrabnezhad, S., Seifi, A., "The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity", Applied Surface Science, Vol. 386, (2016), 33-40.

8. Li, J., Xu, X.o, Liu, X., Yu, C., Yan, D., Sun, Z., Pan, L., "Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis", Journal of Alloys and Compounds, Vol. 679, (2016), 454-462.

9. Bystrova, V.S., Piccirillo, C., Tobaldi, D.M., Castro, P.M.L., Coutinhod, J., Kopyl, S., Pullar, R.C., "Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modeling with measured data", Applied Catalysis B: Environmental, Vol. 196,  2016),100-107.

10. Wang, C., Huang, Z., "Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis", Materials Letters, Vol. 164, (2016), 194-197.

11. Yin, Q., Qiao, R., Zhu, L., Li, Z., Li, M., Wu, W., "α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis", Materials Letters, Vol. 135, (2014), 135-138.

12. Xie, J., Zhou, Z., Lian, Y., Hao, Y., Li, P., Wei, Y., "Synthesis  of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV-vis light irradiation", Ceramics International, Vol. 41, (2015), 2622-2625.13. Zhang, S., Ren, F., Wu, W., Zhou, J., Lingling, S., Xiao, X., Jiang, C., "Size effects of Ag nanoparticles on plasmon-induced enhancement of photocatalysis of Ag-α-Fe2O3 anocomposites", Journal of Colloid and Interface Science, Vol. 427, (2014), 29-34.

14. Wang, T., Yang, G., Liu, J., Yang, B., Ding, S., Yand, Z, Xiao, T., "Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous Fe2O3/TiO2 heterostructured microspheres", Applied Surface Science, Vol. 311, (2014), 314-323.

15. Liang, H., Jiang, X., Chen, W., Wang, S., Xu, B., Wang, Z., "α- Fe2O3/Pt hybrid nanorings and their enhanced photocatalytic activities", Ceramics International, Vol. 40, (2014), 5653- 5658.

16. Wei, Y., Han, S., Walker, D.A., Warren, S.C., Grzybowski, B.A., "Enhanced photocatalytic activity of hybrid Fe2O3-Pd nanoparticulate catalysts", Chemical Science, Vol. 3, (2012), 1090-1094.

17. Xiang, Q., Yu, J., Jaroniec, M., "Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles", Journal of the American Chemical Society, Vol. 134, (2012), 6575-6578.

18. Liu, H., Lv, T., Zhu, C., Su, X., Zhu, Z., "Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity", Journal of Molecular Catalysis A: Chemical, Vol. 396, (2015), 136-142.

19. Wang, D., Xu, Y., Sun, F., Zhang, Q., Wang, P., Wang, X., "Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots odification", Applied Surface Science, Vol.377, (2016), 221-227.

20. Zhu, C., Zhang, L., Jiang, B., Zheng, J., Hu, P., Li, S., Wu, M., Wu, W., "Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation", Applied Surface Science, Vol. 377, (2016), 99-108.

21. Zhao, Y., Pan, F., Li, H., Niu, T., Xu, G., Chen, W., "Facile synthesis of uniform α‒Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction", Journal of Materials Chemistry A, Vol. 1, (2013), 7242-7246.

22. Massey, A.T., Gusain, R., Kumari, S., Khatri, O.P., "Hierarchical microspheres of MoS2 nanosheets: Efficient and regenerative adsorbent for removal of water-soluble dyes",Industrial and Engineering chemistry Research, Vol. 55, (2016), 7124-7131.

23. Wang, D., Xu, Y., Sun, F., Zhang, Q., Wang, P., Wang, X., "Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification", Applied Surface Science, Vol. 377, (2016), 221-227.

24. Zhang, X., Huang, X., Xue, M., Ye, X., Lei, W., Tang, H., Li, C., "Hydrothermal synthesis and characterization of 3D flowerlike MoS2 microspheres", Materials Letters, Vol. 148, (2015), 67-70.

25. Qiao, X., Hu, F., Hou, D.,Li, D., "PEG assisted hydrothermal synthesis of hierarchical MoS2 microspheres with excellent adsorption behavior", Materials Letters, Vol. 169, (2016), 241- 245.

26. Zhang, X., Tang, H., Xue, M., Li, C., "Facile synthesis and characterization of ultrathin MoS2 nanosheets", Materials Letters, Vol. 130, (2014), 83-86.

27. Song, H., Zhang, X., Chen, T., Jia, X., "One-pot synthesis of bundle-like β-FeOOH nanorods and their transformation to porous α-Fe2O3 microspheres", Ceramics International, Vol. 40, (2014), 15595-15602.

28. Khawula, T.N.Y., Raju, K., Franklyn, P.J., Sigalas, I., Ozoemena, K. I., "Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage", Journal of Materials Chemistry, Vol. 4, (2016), 6411-6425.

29. Karimi, M., Eshraghi, M.J., Jahangir, V., "A facile and green synthetic approach based on deep eutectic solvents toward synthesis of CZTS nanoparticles", Materials Letters, Vol. 171, (2016), 100-103.

30. Yuan, Y.J., Tu, J.-R., Ye, Z.J., Chen, D.Q., Hu, B., Huang, Y.- W., Chen, T.T., Cao, D.P., Yu, Z.T., Zou, Z.-G., "MoS2- Graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation", Applied Catalysis B, Environmental, Vol. 188, (2016), 13-22.

31. Farhadian, M. Sangpour, P., Hosseinzadeh, G., "Preparation and photocatalytic activity of WO3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation", RSC Advances, Vol. 6, (2016), 39063-39075.

32. Hosakun, Y., "ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes", PhD Dissertation University of Sopron, (2017).

33. Misho, R.H., Murad, W.A., "Band gap measurements in thin films of hematite Fe2O3, pyrite FeS2 and troilite FeS prepared by chemical spray pyrolysis", Solar Energy Materials and Solar Cells, Vol. 27, 1992, 335-345.

34. Yakovkin, I.N., "Dirac cones in graphene, Interlayer interaction in layered materials, and the band gap in MoS2", Crystals, Vol. 6 , (2016),  43-156.

35. Yang, X., Sun, H., Zhang, L., Zhao, L., Lian, J., Jiang, Q.,"High efficient photoFenton catalyst of α-Fe2O3/MoS2 hierarchical Nanoheterostructures: Reutilization for Supercapacitors", Scientific Reports, Vol. 6, (2016), 1-12.

36. Cai,W., Yu, J., Cheng, B., Su, B.L., Jaroniec, M., "Synthesis of boehmite hollow core/shell and hollow microspheres via sodium

tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment", Journal of Physical Chemistry C, Vol. 113 (2009) 14739-14746.

37. Al-Kahtani, A. A., "Photocatalytic degradation of Rhodamine B dye in Wastewater using Gelatin/CuS/PVA nanocomposites under solar light irradiation", Journal of Biomaterials and Nanobiotechnology, Vol. 8, (2017) 66-82